《AWS_Amazon_EMR_Best_Practices》.pdf

  1. 1、本文档共38页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《AWS_Amazon_EMR_Best_Practices》.pdf

Amazon Web Services – Best Practices for Amazon EMR August 2013 Best Practices for Amazon EMR Parviz Deyhim August 2013 (Please consult /whitepapers/ for the latest version of this paper) Page 1 of 38 Amazon Web Services – Best Practices for Amazon EMR August 2013 Table of Contents Abstract 3 Introduction 3 Moving Data to AWS4 Scenario 1: Moving Large Amounts of Data from HDFS (Data Center) to Amazon S3 4 Using S3DistCp 4 Using DistCp 5 Scenario 2: Moving Large Amounts of Data from Local Disk (non-HDFS) to Amazon S3 6 Using the Jets3t Java Library 6 Using GNU Parallel 7 Using Aspera Direct-to-S3 7 Using AWS Import/Export 7 Using AWS Direct Connect 8 Scenario 3: Moving Large Amounts of Data from Amazon S3 to HDFS 10 Using S3DistCp 10 Using DistCp 10 Data Collection 10 Using Apache Flume 11 Using Fluentd 11 Data Aggregation 12 Data Aggregation with Apache Flume 12 Data Aggregation Best Practices 13 Best Practice 1: Aggregated Data Size 14 Best Practice 2: Controlling Data Aggregation Size 14 Best Practice 3: Data Compression Algorithms 15 Best Practice 4: Data Partitioning 17 Processing Data with Amazon EMR 18 Picking the Right Instance Size 18 Picking the Right Number of Instances for Your Job 19 Estimating the Number of Mappers Your Job Requires 20 Amazon EMR Cluster Types 22 Transient Amazon EMR Clusters 20 Persistent Amazon EMR Clusters 22 Common Amazon EMR Architectures 23 Pattern

文档评论(0)

ghfa + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档