《Handling constraints in global optimization using and AIS》.pdf

《Handling constraints in global optimization using and AIS》.pdf

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《Handling constraints in global optimization using and AIS》.pdf

Handling Constraints in Global Optimization using an Artificial Immune System Nareli Cruz-Cortes,´ Daniel Trejo-Perez´ and Carlos A. Coello Coello CINVESTAV-IPN, Evolutionary Computation Group Depto. de Ingenierıa´ Electrica,´ Seccion´ de Computacion´ Av. Instituto Politecnico´ Nacional No. 2508 Col. San Pedro Zacatenco, Mexico,´ D. F. 07360, MEXICO nareli,dtrejo @computacion.cs.cinvestav.mx, ccoello@cs.cinvestav.mx Abstract. In this paper, we present a study of the use of an artificial immune system (CLONALG) for solving constrained global optimization problems. As part of this study, we evaluate the performance of the algorithm both with binary encoding and with real-numbers encoding. Additionally, we also evaluate the im- pact of the mutation operator in the performance of the approach by comparing Cauchy and Gaussian mutations. Finally, we propose a new mutation operator which significantly improves the performance of CLONALG in constrained op- timization. 1 Introduction Many bio-inspired algorithms (particularly evolutionary algorithms) have been very successful in the solution of a wide variety of optimization problems [3]. However, all of these approaches (including evolutionary algorithms and artificial immune systems), when used for numerical optimization, can be seen as unconstrained search techniques. This means that they require a suitable mechanism to incorporate constraints, such that they can deal with the general nonlinear optimization problem. Within evolutionary algorithms (EAs), external penalty functions have been the most popular mechanism adopted to incorporate constraints into the fitness function [17]. The idea of an external p

文档评论(0)

ghfa + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档