Multiple strategies based orthogonal design particle swarm optimizer for numerical optimization》.pdf

Multiple strategies based orthogonal design particle swarm optimizer for numerical optimization》.pdf

  1. 1、本文档共20页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Multiple strategies based orthogonal design particle swarm optimizer for numerical optimization》.pdf

Computers Operations Research 60 (2015) 91–110 Contents lists available at ScienceDirect Computers Operations Research journal homepage: /locate/caor Multiple strategies based orthogonal design particle swarm optimizer for numerical optimization Quande Qin a,b,c,d, Shi Cheng e,f,n, Qingyu Zhang a,b, Yiming Wei c,d, Yuhui Shi g a Department of Management Science, Shenzhen University, Shenzhen, China b Research Institute of Business Analytics and Supply Chain Management, Shenzhen, China c School of Management and Economics, Beijing Institute of Technology, Beijing, China d Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing, China e Division of Computer Science, The University of Nottingham Ningbo, China f International Doctoral Innovation Centre, The University of Nottingham Ningbo, China g Department of Electrical Electronic Engineering, Xi an Jiaotong-Liverpool University, Suzhou, China a r t i c l e i n f o a b s t r a c t Available online 25 February 2015 In the canonical particle swarm optimization (PSO), each particle updates its velocity and position by taking its Keywords: historical best experience and its neighbors best experience as exemplars and adding them together. Its Global optimization performance is largely dependent on the employed exemplars. However, this learning strategy in the canonical Learning strategy PSO is inefficient when complex problems are being optimized. In this paper, Multiple Strategies based Opposition-based learning

您可能关注的文档

文档评论(0)

cnsg + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档