医学图像分割文献综述.docVIP

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
医学图像分割文献综述.doc

前言 随着科学技术的发展,生物切片图像在生命科学、医学、农业等领域得到越来越广泛的应用。通过对切片图像进行图形、图像处理,可以从图像中提取有意义的目标.并重建出三维模型.为人们提供便利。与其他图像相比,生物切片图像具有颜色相近、灰度不均匀、边缘复杂等特点,增加了图像分割的难度。 常用的图像分割方法有阈值法、基于边缘的方法、基于区域生长的方法等。对于生物切片图像,传统的分割技术或失败,或需要特殊的处理技术?。新兴的数学形态学技术在滤波去噪、保持轮廓信息等方面有着明显的优势。因此, 形态学常与分割方法相结合,如用形态学改进边缘检测效果,应用于生物组织的纹理分割I,以及生物切片的交互式区域分割等。本文探讨形态学与阈值方法相结合的模板法。以实现医学病理切片图像中真皮区域分割 2.2医学图像分割概述 算法应用与研究 图像分割是图像处理中的关键问题,分布的区域,得到的图像称为分割图像, 可以给出如下图像分割的定义[1】:它把图像分成若干个按照一个或几个特征均匀表示的是区域信息。借助集合概念对图像分割令集合R代表整个图像区域,对R的分割可以看着将R分成N个满足以下五个条件的非空子集;Ⅳ ①lJRi=R f=l ②Rin母=a,对所有的i和j,f≠J ③P(Ri)=TRUE,i--1,2一·N ④P(RiA母)=FALSE,i≠J ⑤Rf是连通的区域,i=l,2···N 条件①指出在对一幅图像的分割应将图像中的每个像素都分进某个子区域中;条件②指出在分割结果中各个子区域是互补重叠的;条件③指出在分割结果中每个子区域都有独特的特性;条件④指出在分割结果中,各个子区域具有不同的特性,没有共同元素;条件⑤指出分割结果中同一个子区域内的像素应该是连通的。 医学图像中包含的内容很多,有些是临床诊断所关心的有用区域,称之为感兴趣区域(Region Of Interest,ROI),有些是不感兴趣的周围环境区域,称之为不感兴趣区域(Region Of Uninterested,ROU)。为了识别和分析医学图像感兴趣区域,就必须将这些区域分离出来。在医学图像处理中,自动识别有特定意义的图像成分,解剖结构和其他感兴趣的区域,是图像分割技术的一个根本任务。图像分割技术极大的推动了可视化和特定组织结构处理的发展。而这往往是决定着整个临床和研究分析结果的关键一步。 图像分割的研究多年来一直受到人们的高度重视,至今提出了各种类型的分割算 法。在一个比较细致的分类里,Haralick和Shapiro将所有算法分为6类:测度空间导向的空间聚类、单一连接区域生长策略、中心连接区域生长策略、空间聚类策略和分裂合并策略。依据算法所使用的技术或针对的图像,Paltl3】也把图像分割算法分成了6类:阈值分割,像素分割、深度图像分割、彩色图像分割,边缘检测和基于模糊集的方法。但是,该方法中,各个类别的内容是有重叠的。为了涵盖不断涌现的新方法,有的研究者将图像分割算法分为以下六类t并行边界分割技术、串行边界分割技术、并行区域分割技术、串行区域分割技术、结合特定理论工具的分割技术和特殊图像分割技术。而在较近的一篇综述中,更有学者将图像分割简单的分割数据驱动的分割和模型驱动的分割两类。 2.3基于边缘的图像分割 所谓边缘是指其周围像素灰度有变化的那些像素的集合【11,边缘广泛存在于物体与背景之间、物体与物体之间、基元与基元之间。物体的边缘是由灰度的不连续所反映的。基于边缘的分割代表了一大类基于图像边缘信息的方法,它是最早的分割方法之一,而且现在仍然是非常重要的。基于边缘的分割依赖于由边缘检测子找到的图像边缘,这些边缘指示出了图像在灰度、色彩、纹理等方面不连续的位置。然后再将这些不连续的边缘像素连成完整的边界。常用的边缘提取的算法有微分算子法、曲面拟合法、Hough变换法等。 1.微分算子法 微分算子法是通过求图像一阶导数的极值点或二阶导数的零点来检测边缘。常用的 一阶导数有Perwitt算子、Sobel算子、梯度算子,二阶导数算子有Kirch算子,拉普拉 斯算子和Wallis算子等非线性算子。 (1)Prewitt算子 Prewitt算子不是直接差分,而是先平均再差分,其中X,Y的模板如下: r一1 0 11 rl 1 l 1 Prewitt算子具有抑制噪声的能力,如果模板更大些,则抑制噪声更加明显。 (2)Sobel算子 Sobel算子是先加权平均后再求差分,其X,Y的模板如下: 2.4基于区域的图像分割 基于区域的图像分割技术是以区域为对象【I”,依照罔像纹理特征、灰度值、换图像的特征等共同属性来划分图像区域。该方法给图像中的每一个像素都赋予一个类别属性,使具有预定义属性的像素聚集在同类别中。常见的基于区域分割法有区域生长与分裂台并法、闽值法、聚类等。 l区域生长和分裂台){二法

文档评论(0)

xx88606 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档