毕业设计(论文)_车牌号码识别仿真.doc

  1. 1、本文档共26页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
毕业设计(论文)_车牌号码识别仿真

本科毕业设计(论文) ( 2010 届 ) 题 目: 车牌号码识别仿真 分 院: 电子信息分院 专 业: 电子信息工程 班 级: 06电子本1 姓 名: 学 号: 指导老师: 完成时间: 2010年4月 车牌识别系统在交通的智能监视和管理中有着重要的应用,近几年发展非常迅速。基于图像和字符识别技术的车牌字符识别系统也是目前国内外模式识别应用研究领域的一个热点。尽管车牌的先验知识比较丰富,但是在复杂的背景下,车牌中的字符识别仍然比较困难。目前的车牌识别系统大多是针对简单场景、单一车牌。 车牌字符识别系统的关键技术包括数字图像处理、车牌定位、车牌字符分割和字符识别技术。本文对已定位好的车牌进行图像位图读取、图像二值化、字符分割、提取字符特征、BP神经网络设计等模块进行了初步的研究。 在字符分割方面,分析了牌照图像二值化与标准归一化以及几何校正的各种算法。借助牌照字符固定宽度、间距的固定比例关系等先验知识实现字符的分割。 在特征提取方面,将字符归一化,再采用13特征法进行字符特征提取。 在字符识别方面,分析比较了常用的字符识别方法。在此基础上详细分析基于BP神经网络的识别方法。实验结果证明,所采用的BP神经网络具有良好的性能满足在复杂环境下实时识别车牌的要求,具有一定的理论和实际意义。 关键词:车牌字符识别;特征提取;BP神经网络;MATLAB ABSTRACT License plate recognition system has important applications in the intelligent traffic monitoring and management developed rapidly in recent years. Based on image and character recognition technology license plate recognition system pattern recognition at home and abroad is also a hot field of applied research. Although the license plate of the prior knowledge rich, but in a complex background, the license plate of the character recognition is still more difficult. Most of the current license plate recognition system is a simple scenario for a single plate. The key technologies of license plate recognition system include digital image processing, license plate location, license plate character segmentation technology. This article has been positioning for a good license plate reads the bitmap image, image binarization, character segmentation, feature extraction of characters, BP neural network design module for a more detailed study. In the character segmentation area. Analyze of the license plate image binarization with the standard normalization and geometric correction algorithms. With fixed-width character license, a fixed proportion of the relationship between the pitch prior knowledge to achieve segmentation of characters. In feature extraction. The character normalization, again using 13 features of character feature extraction method. In character

文档评论(0)

yaoyaoba + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档