- 1、本文档共9页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Fast Inference in Sparse Coding Algorithms with Applications.pdf
Fast Inference in Sparse Coding Algorithms
with Applications to Object Recognition
Koray Kavukcuoglu Marc’Aurelio Ranzato Yann LeCun
Department of Computer Science
Courant Institute of Mathematical Sciences
New York University, New York, NY 10003
{koray,ranzato,yann}@
December 4, 2008
Computational and Biological Learning Laboratory
Technical Report
CBLL-TR-2008-12-01†
Abstract
Adaptive sparse coding methods learn a possibly overcomplete set of
basis functions, such that natural image patches can be reconstructed by
linearly combining a small subset of these bases. The applicability of
these methods to visual object recognition tasks has been limited because
of the prohibitive cost of the optimization algorithms required to compute
the sparse representation. In this work we propose a simple and efficient
algorithm to learn basis functions. After training, this model also provides
a fast and smooth approximator to the optimal representation, achieving
even better accuracy than exact sparse coding algorithms on visual object
recognition tasks.
1 Introduction
Object recognition is one of the most challenging tasks in computer vision. Most
methods for visual recognition rely on handcrafted features to represent images.
It has been shown that making these representations adaptive to image data
can improve performance on vision tasks as demonstrated in [1] in a supervised
†Presented at OPT 2008 Optimization for Machine Learning Workshop, Neural Informa-
tion Processing Systems, 2008
1
1 INTRODUCTION
您可能关注的文档
- Exploring Africa's strongEconomic Recoverystrong.pdf
- Exploring cells with a centrifuge C Duve, www.strongsciencemagstrong.org.pdf
- Exploring Customer Intention of strongPurchasingstrong Counterfeit.pdf
- Exploring e-Commerce Readiness in China The Case of the.pdf
- Exploring motivations for contributing to open source.pdf
- Exploring strongPublic Sectorstrong Communication Performance Testing a.pdf
- Exploring the Experiences of Upper Elementary School Children.pdf
- EXPLORING THE INFLUENCE OF strongTRUSTstrong ON MOBILE PAYMENT ADOPTION.pdf
- Exploring the link between integrated leadership and strongpublicstrong.pdf
- Exploring the opportunities and challenges of using mobile.pdf
文档评论(0)