Internet Traffic Prediction by strongWstrong-Boost Classification and.pdfVIP

Internet Traffic Prediction by strongWstrong-Boost Classification and.pdf

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Internet Traffic Prediction by W-Boost: Classification and Regression∗ 1 2 1 1 Hanghang Tong , Chongrong Li , Jingrui He , and Yang Chen 1 Department of Automation, Tsinghua University, Beijing 100084, China {walkstar98,hejingrui98}@mails.tsinghua.edu.cn 2 Network Research Center of Tsinghua University, Beijing 100084, China licr@cernet.edu.cn Abstract. Internet traffic prediction plays a fundamental role in network de- sign, management, control, and optimization. The self-similar and non-linear nature of network traffic makes highly accurate prediction difficult. In this pa- per, we proposed a new boosting scheme, namely W-Boost, for traffic predic- tion from two perspectives: classification and regression. To capture the non- linearity of the traffic while introducing low complexity into the algorithm, ëstumpí and piece-wise-constant function are adopted as weak learners for clas- sification and regression, respectively. Furthermore, a new weight update scheme is proposed to take the advantage of the correlation information within the traffic for both models. Experimental results on real network traffic which exhibits both self-similarity and non-linearity demonstrate the effectiveness of the proposed W-Boost. 1 Introduction Internet traffic prediction plays a fundamental role in network design, management, control, and optimization [12]. Essentially, the statistics of network traffic itself de- termines the predictability of network traffic [2], [12]. Two of the most important discoveries of the statistics of Interne

文档评论(0)

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档