Markov Chain Monte Carlo in small worlds - University of Idaho.pdfVIP

Markov Chain Monte Carlo in small worlds - University of Idaho.pdf

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Stat Comput (2006) 16: 193–202 DOI 10.1007/s11222-006-6966-6 Markov Chain Monte Carlo in small worlds Yongtao Guan · Roland Fleißner · Paul Joyce · Stephen M. Krone Received: November 2004 / Accepted: December 2005 C Springer Science + Business Media, LLC 2006 Abstract As the number of applications for Markov Chain improve the performance of MCMC it preserves the simplic- Monte Carlo (MCMC) grows, the power of these methods ity of the underlying algorithm. as well as their shortcomings become more apparent. While MCMC yields an almost automatic way to sample a space Keywords Markov Chain Monte Carlo · according to some distribution, its implementations often fall Metropolis-Hastings algorithm · Proposal distributions · short of this task as they may lead to chains which converge Small-world networks · Importance sampling too slowly or get trapped within one mode of a multi-modal space. Moreover, it may be difficult to determine if a chain is 1. Introduction only sampling a certain area of the space or if it has indeed reached stationarity. Markov Chain Monte Carlo (Gamerman, 1997) is a sampling In this paper, we show how a simple modification of scheme for surveying a space S with a prescribed probability the proposal mechanism results in faster convergence of the measure π . It has particular importance in Bayesian analy- chain and helps to circumvent the problems described above. sis, where x ∈ S represents a vector of parameters and π (x ) This mechanism, which is based on an idea from the field is the posterior distribution of the parameters conditional on of “small-world” networks, amounts to adding occasional the data. MCMC can as well be used to solve the so-called “wild” proposals to any local proposal s

文档评论(0)

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档