第15章数据挖掘在电子商务中的应用祥解.ppt

第15章数据挖掘在电子商务中的应用祥解.ppt

  1. 1、本文档共20页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第15章数据挖掘在电子商务中的应用祥解.ppt

*/19 * 商务数据挖掘与应用案例分析 第15章 数据挖掘在电子商务中的应用 15.1 应用概述 15.2 主要应用领域 15.3 案例1:基于关联分析的淘宝网推荐 15.4 案例2:协同过滤技术在电影推荐上的简单应用 15.1 应用概述 电子商务(E-Commerce,简称EC)是指在互联网(Internet)、企业内部网(Intranet)和增值网(Value Added Network,简称VAN)上以电子交易方式进行交易及其它相关服务活动,它是传统商业活动各环节的电子化和网络化。电子商务包括电子货币交换、供应链管理、电子交易市场、网络营销、在线事务处理、电子数据交换、存货管理和自动数据收集系统等方面。 随着互联网的迅速普及,电子商务已如雨后春笋般地迅速发展壮大起来。目前很多大型企业都拥有自己的商务网站。但是,电子商务在给人们带来方便快捷的同时,也给人们带来了不少的难题和挑战。对企业来说,需要从海量的交易信息中找出有用的、有潜在价值的信息,制定更好的经营策略;对消费者来说,需要花费大量的时间和精力来浏览网上海量的商品信息,并从中比较和选购商品。数据挖掘技术可以从海量的数据中抽取出潜在的、有价值的知识、模型或规则,从而为企业或消费者提供决策支持。例如,企业可以采用数据挖掘技术进行客户细分、高价值客户挖掘和客户流失预测,还可以进行个性化推荐以改善用户体验,从而提升用户从点击到购买的转化率。 15.2 主要应用领域 15.2.1 网络客户关系管理 15.2.2 网站设计优化 15.2.3 推荐系统 15.2.1 网络客户关系管理 网络客户关系管理(Electronic Customer Relationship Management,简称E-CRM)是企业在信息化中基于Internet平台的客户关系管理,其核心思想是在电子商务环境中,CRM具有在企业与客户、供应商及业务伙伴之间建立无缝的协作能力,通过包括Web在内的多种渠道来跟踪和管理与客户进行的交流和交易,从而实现企业与每位客户的最大程度与最大自由的互动。 数据挖掘可在客户获取、客户细分和客户保留三方面优化网络客户关系管理质量。 15.2.2 网络设计优化 从网站的用户浏览日志文件中挖掘客户访问页面的使用模式,可以为改良网站的内容布局提供良好的建议。 对Web站点的优化可以从两方面来考虑:一是发现客户访问页面的相关性,在密切相关的网页之间增加互通链接;二是发现用户的期望位置,如果在期望位置的访问频率高于对实际位置的访问频率,可考虑在期望位置和实际位置之间建立导航链接。以著名的电子商务平台亚马逊为例,其Web站点优化主要体现在以下几方面: (1)产品有哪些信誉好的足球投注网站和在线采购 (2)相关产品展示 (3)基于历史行为的产品推荐 (4)可定制的推荐记录 (5)全面的导航条 15.2.3 推荐系统 (1) 电子商务推荐系统是将数据挖掘中的推荐技术应用到电子商务领域的范例。随着电子商务活动的开展,电子商务平台可以收集到大量用户相关数据,如用户交易数据、用户注册数据、用户评分数据、用户咨询数据等。这些数据中蕴含着丰富的用户偏好信息,推荐系统可以对用户行为和个人信息进行分析处理,从中获取用户兴趣信息并进行推荐。 协同过滤推荐是目前研究最多应用最广泛的推荐算法,包括基于内容的协同过滤方法、基于模型的协同过滤。其他推荐方法还包括基于效用的推荐和基于知识的推荐等。协同过滤在电子商务中多用于在线动态推荐,而关联分析则常用于离线静态推荐。 目前,大型电子商务系统,如Amazon、eBay和Dangdang,都不同程度地使用了电子商务推荐系统。以著名的电子商务网站淘宝网为例,其推荐功能体现在以下几方面: 15.2.3 推荐系统 (2) 图15-3 “掌柜热卖”推荐示例 图15-4 “基于浏览记录的推荐”示例 图15-5 “猜你喜欢的”推荐示例 15.3 案例1: 基于关联分析的淘宝网推荐 15.2.1 商业理解 15.2.2 数据理解阶段 15.2.3 数据准备阶段 15.2.4 建模阶段 15.2.1 商业理解 面对电子商务网站上海量和纷繁多样的商品,很多用户感到无所适从,他们需要花费大量时间来挑选自己需要或者感兴趣的商品。网上销售与传统的店面销售不同,没有售货员提供现场咨询服务。但是,网上销售可以利用互联网的优势,为用户提供更优质的服务。由于服务器会记录用户在浏览电子商务网站时的所有行为,因此,企业很容易收集用户的浏览记录、交易信息及偏好数据。 在个性化推荐技术的关联规则分析中,最典型的例子是购物篮分析,其目标是发现交易数据库中不同商品之间的联系强度,挖掘用户潜在购买模式,并将这些模式所对应的服务或产品展示给用户,为其提供参考,从而提高用户的满意度及购买率。 15.2.2 数据

文档评论(0)

四娘 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档