- 1、本文档共38页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
课程设计任务书
学生姓名: 专业班级:
指导教师: 李政颖 工作单位: 信息工程学院
题 目: 基于LMS 算法的多麦克风降噪LMS ;麦克风;降噪;MATLAB
Abstract
Noise reduction of speech is mainly about how to use signal processing techniques to eliminate the noise signal,so as to improve the ratio to extract useful signal output signal-to-noise. Usually the method to eliminate the noise pollution in the signal is that signal polluted through a noise suppression and signal relative invariant filter, which has the input noise from the signal can not be detected.then through the filter, the original noise is counteracted, so as to achieve the improvement of signal to noise ratio.
The least mean square (LMS) adaptive algorithm is known to the error between the desired filter response and the output signal of the mean square value of minimum standard, based on the input signal to estimate the gradient vector in the iterative process,and the adaptive iterative algorithm and update the weight in order to achieve the optimal. LMS algorithm is a gradient descent method, whose characteristics and advantages are its simplicity, this algorithm needs to calculate the correlation function of the corresponding, also does not need matrix operation.
In order to complete the noise reduction of speech based on LMS, I have conducted a deep study and research about the modulation and demodulation principle of LMS .by using the simulation software MATLAB,I design and emulate the modulation and demodulation of the modulation and demodulation principle of LMS, and the simulation results are analyzed.
Key word: LMS;microphone;Noise reduction of speech;MATLAB
目 录
摘 要 I
Abstract II
1. 前言 1
2. 基本原理及数学模型 2
2.1 语音与噪声的基本知识 2
2.1.1 语音与噪声的特性 2
2.1.2 带噪语音的模型 3
2.2 自适应噪声抵消原理 4
2.2.1 滤波器结构 4
2.2.2 最佳滤波准则 5
2.3 LMS自适应算法 6
2.3.1 权向量的收敛 9
2.3.2 性能指标 9
2.3.3 性能分析 10
2.4 LMS降噪系统设计 11
3. 仿真设计与实现方法 14
3.1 仿真环境介绍 14
3.2 MATLAB中的算法实现 16
3.3 MATLAB中的仿真实现 17
3.3.1 读取语音信号 17
3.3.2 播放语音信号 17
3.3.3 语音信号波形实现 17
3.3.4 语音信号频谱实
文档评论(0)