网站大量收购闲置独家精品文档,联系QQ:2885784924

多元回归分析其他问题.ppt

  1. 1、本文档共51页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
多元回归分析其他问题

Economics 20 - Prof. Anderson Redefining Variables Changing the scale of the y variable will lead to a corresponding change in the scale of the coefficients and standard errors, so no change in the significance or interpretation Changing the scale of one x variable will lead to a change in the scale of that coefficient and standard error, so no change in the significance or interpretation 因变量或自变量以对数形式出现,改变度量单位不会影响斜率系数,只会改变截距项。 Beta Coefficients Occasional you’ll see reference to a “standardized coefficient” or “beta coefficient” which has a specific meaning Idea is to replace y and each x variable with a standardized version – i.e. subtract mean and divide by standard deviation Coefficient reflects standard deviation of y for a one standard deviation change in x Beta Coefficients (cont) Example 6.1 :Effects of Pollution on Housing Prices Functional Form OLS can be used for relationships that are not strictly linear in x and y by using nonlinear functions of x and y – will still be linear in the parameters Can take the natural log of x, y or both Can use quadratic forms of x Can use interactions of x variables Interpretation of Log Models ln(y) = b0 + b1ln(x) + u b1 is the elasticity of y with respect to x ln(y) = b0 + b1x + u b1 is approximately the percentage change in y given a 1 unit change in x y = b0 + b1ln(x) + u b1 is approximately the change in y for a 100 percent change in x Why use log models? Log models are invariant to the scale of the variables since measuring percent changes They give a direct estimate of elasticity For models with y 0, the conditional distribution is often heteroskedastic or skewed, while ln(y) is much less so The distribution of ln(y) is more narrow, limiting the effect of outliers. it can not be used if a variable takes on zero or negative values. It is more difficult to predict the original variable when using a dependent variable in log form. Some Rules of Thumb variables used in log form: Dollar amounts that

文档评论(0)

daoqqzhuan3 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档