1. 1、本文档共33页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
sparse PCA.ppt

Sparse Principal Component Analysis Zou, Hastie, Tibshirani Outline Microarray expression data PCA on expression data SPCA Definition Motivation Method Linear regression Lasso/elastic net 2 Examples DNA Microarrays Gene Protein Monitors gene expression levels on a genomic scale. (~abundance of each protein in the cell) DNA Microarrays One (micro-)array = one snapshot of the cell Each spot represents a gene Intensity of colors Indicate expression level of the corresponding gene in a certain experiment Noisy, each expression level is only an approximation. Microarray Expression Data PCA on Expression Data PCA on Expression Data Drawbacks of PCA PCs (eigen-genes) are linear combinations of all n variables (genes). Each PC corresponds to a loading vector (columns of V) Loadings = coefficients corresponding to variables in the linear combination Difficult to interpret SPCA: Motivation Idea: Reduce the number of explicitly used variables (genes). Approach: Modify PCA so that PCs have sparse loadings = sparse PCA (SPCA) SPCA Writes PCA as a regression-type optimization problem. Uses lasso a variable selection technique produces sparse models Result: modified PCA Modified PCs with sparse loadings. Linear Regression Problem Input variables Response variable Regression coefficients Multivariate linear model Linear Regression Problem Least Squares Solution Lasso Solution Lasso Solution Elastic Net Solution Elastic Net Solution SPCA Goal: Construct a regression framework in which PCA can be reconstructed exactly. Use lasso/elastic-net to construct modified PCs with sparse loadings. Reconstruction of PCA in a Regression Framework Idea: Each PC is a linear combination of the p variables. Its loadings can be recovered by regression PC on the p variables. Theorem 1 Reconstruction of PCA in a Regression Framework By theorem 1, we can reconstruct the loadings of PCs exactly by a linear regression problem. not an alternative to PCA as it

文档评论(0)

wdhtm341 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档