- 1、本文档共22页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
求用matlab编BP神经网络预测程序
求一用matlab编的程序 P1=[3140 3767 4801 5288 5501 6157 6495 7061]
P2=[127 133 130 125 136 140 142 142]
T=[455 544 642 668 731 792 862 918]
% 创建一个新的前向神经网络
net_1=newff(minmax(P),[10,1],{tansig,purelin},traingdm)
% 创建一个新的前向神经网络
net_1=newff(minmax(P),[10,1],{tansig,purelin},traingdm)
% 当前输入层权值和阈值
inputWeights=net_1.IW{1,1}
inputbias=net_1.b{1}
% 当前网络层权值和阈值
layerWeights=net_1.LW{2,1}
layerbias=net_1.b{2}
% 设置训练参数
net_1.trainParam.show = 50;
net_1.trainParam.lr = 0.05;
net_1.trainParam.mc = 0.9;
net_1.trainParam.epochs = 10000;
net_1.trainParam.goal = 1e-3;
% 调用 TRAINGDM 算法训练 BP 网络
[net_1,tr]=train(net_1,P,T);
% 对 BP 网络进行仿真
A = sim(net_1,P);
% 计算仿真误差
E = T - A;
MSE=mse(E)
X1=[7505 7972
];%测试
sim(net_1,X1)
X2=[145 146
];%测试
sim(net_1,)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
不可能啊 我2009
?28
对初学神经网络者的小提示第二步:掌握如下算法:2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社, Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。4.ART(自适应谐振理论),该算法的最通俗易懂的读物就是《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第15和16章。若看理论分析较费劲可直接编程实现一下16.2.7节的ART1算法小节中的算法.4.BP算法,初学者若对误差反传的分析过程理解吃力可先跳过理论分析和证明的内容,直接利用最后的学习规则编个小程序并测试,建议看《机器学习》(机械工业出版社,Tom M. Mitchell著,中英文都有)的第4章和《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第11章。BP神经网络Matlab实例(1)分类:Matlab实例采用Matlab工具箱函数建立神经网络,对一些基本的神经网络参数进行了说明,深入了解参考Matlab帮助文档。% 例1 采用动量梯度下降算法训练 BP 网络。 % 训练样本定义如下: % 输入矢量为 ? % p =[-1 -2 3 1 % ? ? -1 1 5 -3] % 目标矢量为 ? t = [-1 -1 1 1] close all clear clc % ---------------------------------------------------------------% NEWFF——生成一个新的前向神经网络,函数格式:% net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,% PR -- R x 2 matrix of min and max values for R input elements% (对于R维输入,PR是一个R x 2 的矩阵,每一行是相应输入的边界值)% Si -- 第i层的维数% TFi -- 第i层的传递函数, default = tansig% BTF -- 反向传播网络的训练函数, default = traingdx%
文档评论(0)