- 1、本文档共27页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
1.1回归分析的基本思想和其初步应用.ppt
* * * * * * 1.1回归分析的基本思想及其初步应用 例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。 59 43 61 64 54 50 57 48 体重/kg 170 155 165 175 170 157 165 165 身高/cm 8 7 6 5 4 3 2 1 编号 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。 案例1:女大学生的身高与体重 解:1、选取身高为自变量x,体重为因变量y,作散点图: 2、从散点图还看到,样本点成条状分布, 身高和体重有比较好的线性相关关系,因此可 以用线性回归方程y=bx+a来近似的 刻画它们之间的关系。 由数学三的知识可知 根据最小二乘法估计 和 就是未知参数a和b的最好估计, 根据最小二乘法估计 和 就是未知参数a和b的最好估计, 于是有b= 所以回归方程是 所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为 探究: 身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗? 探究: 身高为172cm的女大学生的体重一定是60.316kg吗? 如果不是,你能解析一下原因吗? 答:身高为172cm的女大学生的体重不一定是60.316kg, 但一般可以认为她的体重在60.316kg左右。 从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们关系。 我们可以用线性回归模型来表示:y=bx+a+e,其中a和b为模型的未知参数,e称为随机误差。 显然身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重在60.316kg左右,散点图中的样本点和回归直线的相互位置说明了这一点: 思考 产生随机误差项e的原因是什么? 随机误差e的来源(可以推广到一般): 1、其它因素的影响:影响身高 y 的因素不只是体重 x,可能 还包括遗传基因、饮食习惯、生长环境等因素; 2、用线性回归模型近似真实模型所引起的误差; 3、身高 y 的观测误差。 函数模型与回归模型之间的差别 函数模型: 回归模型: 线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和 随机误差项e共同确定,即自变量x只能解析部分y的变化。 在统计中,我们也把自变量x称为解析变量,因变量y称为预报变量。 思考:如何发现数据中的错误?如何衡量模型的拟合效果? 在实际应用中,我们用回归方程 中的 估计(1)中的bx+a,由于随机误差e=y-(bx+a) ,所以 ,对样本点而言 对回归模型进行统计检验 表1-4列出了女大学生身高和体重的原始数据以及相应的残差数据。 在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关, 是否可以用回归模型来拟合数据。 残差分析与残差图的定义: 然后,我们可以通过残差 来判断模型拟合的效果,判断原始 数据中是否存在可疑数据,这方面的分析工作称为残差分析。 0.382 -2.883 6.627 1.137 -4.618 2.419 2.627 -6.373 残差 59 43 61 64 54 50 57 48 体重/kg 170 155 165 175 170 157 165 165 身高/cm 8 7 6 5 4 3 2 1 编号 我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本 编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。 残差图的制作及作用。 坐标纵轴为残差变量,横轴可以有不同的选择; 若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域; 对于远离横轴的点,要特别注意。 身高与体重残差图 异常点 错误数据 模型问题 几点说明: 第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。 另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。 思考: 如何刻画预报变量(体重)的变化?这个变化在多大程度上 与解析变量(身高)有关?在多大程度上与随机误差有关? 那么,在这个总
文档评论(0)