网站大量收购独家精品文档,联系QQ:2885784924

数字图像小波压缩算法的研究 毕业论文.doc

  1. 1、本文档共19页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
课程设计报告 课程名称:通信系统课程设计 设计题目: 数字图像小波压缩算法的研究 系 别: 通信与控制工程系 专 业: 通信工程 班 级: 通信2班 学生姓名: 学 号: 07416238 起止日期:2010年12月20日-2011年1月2日 指导教师: 摘 要 随着计算机网路和多媒体技术的迅猛发展,人们对图像信息要求越来越高,对图像信息传输的量也有很高的期盼。数字图像信息的丰富,是人类认识世界的重要信息来源,但是图像数据的量是很庞大的,这就迫切的需要对图像数据进行压缩编码处理。图像压缩编码长期以来利用离散余弦变换(DCT)作为变换编码的主要技术,然而利用DCT变换存在明显的方块效应,而且要进一步提高压缩性能很困难。小波变换由于具有能够有效地描述非平稳信号的独特优点而成为当前图像压缩编码的主要方向。本论文主要对目前已有的小波变换图像压缩方法进行了一些总结和归纳。 关键词:图像压缩;小波变换;小波基 目 录1.课题背景及目的 5 2.国内外研究状况 6 3.基于小波变换的图像压缩与编码 7 3.1 引言 7 3.2 小波变换 7 3.3 常用的小波函数 8 3.3.1 Haar小波 9 3.3.2 Daubechies(dbN)小波系 9 3.3.3 Biorthogonal(bior Nr.Nd)小波系 9 3.3.4 Symlets(symN)小波系 10 3.3.5 Coiflet(coifN)小波系 10 3.4 小波变换压缩算法步骤 10 3.5 小波基的选择 11 4.小波变换实验结果与分析 12 4.1 第一次小波压缩 13 4.2 第二次小波压缩 14 4.3 特性分析及本章总结 15 致谢 17 参考文献 17 附录 基于小波变换图像压缩的MATLAB程序 19 课题背景及目的 随着数字通信,计算机网络以及多媒体的飞速发展,多媒体通信的发展态势越来越强。据统计,在人类感觉器官接受的各类信息中,视觉占了70%。这类视觉信息经过数字化后,如果不进行压缩,其数据量是巨大的,将占用极大的存储空间和信息带宽,这与当前硬件技术所提供的计算机存储资源和网络带宽之间有很大的差距。因此,图像压缩成为解决多媒体通信的问题的一个关键环节。从本质上来说,就是要处理的图像源数据用一个的规则交换组合,从而达到以尽可能少的代码(符号)来表示尽可能多的数据信息的目的。压缩通过编码来实现,或者说编码带来压缩的效果。根据目前网络多媒体通信的现状和发展趋势,在将来相当长的一段时间内,数字化的媒体数据以压缩形式存储和传输将是唯一选择。 由图像作为传递信息的媒体和手段是十分重要的。在多媒体计算机系统、电子出版、视频会议、数字化图书馆等许多领域,数字图像都有着广泛的应用。然而用以表示这些图像的数据量很大,使得存储成本很高,尤其不能满足现今网络环境下进行多媒体通信的需求。在这样的背景下,图像编码理论越来越受到广泛的关注,并且迅速发展起来。 小波分析是傅立叶分析发展史上的一个里程碑,被誉为“数学显微镜”。作为一种多分辨率分析方法,小波分析具有很好的时频局部化特性,特别适合按照人眼视觉特性设计图像编码方法,也非常有利于图像信号的渐进传输。 在实际应用中,基于小波变换的图像编码,在压缩比和编码质量方面均优于传统的DCT变换编码。提升小波变换的提出,为小波图像编码又注入了新的活力,与传统的小波变换相比,它不依赖于傅立叶变换,计算简单,时间、空间复杂度低,易于实现,被称为第二代小波变换。而且,随着各种高效的小波系数量化方法的提出,基于小波的图像编码方法的发展越来越迅速,并取得了非常好的效果。所以,在新的国际编码标准JPEG2000和MPEG-4中都采用了基于小波变换的图像编码方法。同样,嵌入式零树小波编码(Embedded Zerotree Wavelet Coding,EZW)是一个简单的算法,可以直接产生嵌入式码流,不需要训练码本,且在所要求的精度下随时可以结束编码,因而有很好的发展和应用前景。近几年来,国内外的学者们不断的研究发现这种算法本身还存在着缺陷和不足,还有很多地方值得我们去改进和进一步研究,其对算法的改进将是静态图像嵌入式编码算法领域的一个主要研究方向[1]。 国内外研究状况 自二十世纪八十年代以来,小波变换因其特有的与人眼视觉特性相符的多分辨率分析能力及方向选择能力,而被广泛地应用于图像编码领域,取得了很大的成功。 图像经小波变换后,并没有实现压缩,只是对

文档评论(0)

绿风 + 关注
实名认证
内容提供者

教师资格证持证人

该用户很懒,什么也没介绍

领域认证该用户于2024年11月27日上传了教师资格证

1亿VIP精品文档

相关文档