一道回归分析题的思维拓展与延伸.doc

一道回归分析题的思维拓展与延伸.doc

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
一道回归分析题的思维拓展与延伸

一道回归分析、回归分析的基本步骤:(1) 画出两个变量的散点图(2) 求回归直线方程(3) 用回归直线方程进行预报 二、举例:例1 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170 体重/kg 48 57 50 54 64 61 43 59 求根据女大学生的身高预报体重的回归方程,并预报一名身高为 172 cm 的女大学生的体重. 解:由于问题中要求根据身高预报体重,因此选取身高为自变量 x ,体重为因变量 y . 作散点图 (1) (2) 其中,()成为样本点的中心. 可以得到. 于是得到回归方程. 因此,对于身高172 cm 的女大学生,由回归方程可以预报其体重为 ( kg ) . 是斜率的估计值,说明身高 x 每增加1个单位时,体重y就增加0.849 位,这表明体重与身高具有正的线性相关关系. 三.思维拓展与延伸 1.如何描述它们之间线性相关关系的强弱? 在必修 3 中,我们介绍了用相关系数;来衡量两个变量之间线性相关关系的方法.本相关系数的具体计算公式为. 当r0时,表明两个变量正相关;当r0时,表明两个变量负相关.r的绝对值越接近1,表明两个变量的线性相关性越强;r的绝对值接近于0时,表明两个变量之间几乎不存在线性相关关系.通常,当r的绝对值大于0. 75 时认为两个变量有很强的线性相关关系. 在本例中,可以计算出r =0. 798.这表明体重与身高有很强的线性相关关系,从而也表明我们建立的回归模型是有意义的. 2.如何理解与间的误差 显然,身高172cm 的女大学生的体重不一定是60. 316 kg,但一般可以认为她的体重接近于60 . 316 kg .如下图中的样本点和回归直线的相互位置说明了这一点. 由于所有的样本点不共线,而只是散布在某一条直线的附近,所以身高和体重的关系可用下面的线性回归模型来表示: 这里a和b为模型的未知参数,e是y与之间的误差.通常e为随机变量,称为随机误差,它的均值 E(e)=0,方差D(e)=>0 .这样线性回归模型的完整表达式为: (3) 在线性回归模型(3)中,随机误差e的方差护越小,通过回归直线 预报真实值y的精度越高.随机误差是引起预报值与真实值 y 之间的误差的原因之一,大小取决于随机误差的方差. 另一方面,由于公式(1)和(2)中 和为截距和斜率的估计值,它们与真实值a和b之间也存在误差,这种误差是引起预报值与真实值y之间误差的另一个原因. 3. 产生随机误差项e的原因是什么? 一个人的体重值除了受身高的影响外,还受许多其他因素的影响.例如饮食习惯、是否喜欢运动、度量误差等.事实上,我们无法知道身高和体重之间的确切关系是什么,这里只是利用线性回归方程来近似这种关系.这种近似以及上面提到的影响因素都是产生随机误差 e的原因. 因为随机误差是随机变量,所以可以通过这个随机变量的数字特征来刻画它的一些总体特征.均值是反映随机变量取值平均水平的数字特征,方差是反映随机变量集中于均值程度的数字特征,而随机误差的均值为0,因此可以用方差来衡量随机误差的大小. 4. 用身高预报体重时,需要注意哪些问题? 需要注意下列问题: (1).回归方程只适用于我们所研究的样本的总体.例如,不能用女大学生的身高和体重之间的回归方程,描述女运动员的身高和体重之间的关系.同样,不能用生长在南方多雨地区的树木的高与直径之间的回归方程,描述北方干旱地区的树木的高与直径之间的关系. (2).我们所建立的回归方程一般都有时间性.例如,不能用 20 世纪 80 年代的身高体重数据所建立的回归方程,描述现在的身高和体重之间的关系. (3).样本取值的范围会影响回归方程的适用范围.例如,我们的回归方程是由女大学生身高和体重数据建立的,那么用它来描述一个人幼儿时期的身高和体重之间的关系就不恰当(即在回归方程中,解释变量 x 的样本的取值范围为[155cm,170cm〕 ,而用这个方程计算 x-70cm 时的y值,显然不合适.) (4).不能期望回归方程得到的预报值就是预报变量的精确值.事实上,它是预报变量的可能取值的平均值. 1 / 4

文档评论(0)

youshen + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档