- 1、本文档共50页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
麻省理工学院的研究所如何做科研
双语版
中文翻译版:
麻省理工学院 人工智能实验室 来自MIT人工智能实验室:如何做研究?作者:人工智能实验室全体研究生编辑:David Chapman 版本:1.3 摘要 本文的主旨是解释如何做研究。我们提供的这些建议,对做研究本身(阅读、写作和 程序设计),理解研究过程以及开始热爱研究(方法论、选题、选导师和情感因素),都是极 具价值的。备注:人工智能实验室的Working Papers用于内部交流,包含的信息由于过于初步或者过于详细而无法发表。不像正式论文那样,会列出所有的参考文献。1. 简介??这是什么?并没有什么神丹妙药可以保证在研究中取得成功,本文只是列举了一些可能会有所帮助的非正式意见。??目标读者是谁?本文档主要是为MIT人工智能实验室新入学的研究生而写,但对于其他机构的人工智能研究者也很有价值。即使不是人工智能领域的研究者,也可以从中发现对自己有价值的部分。??如何使用?要精读完本文,太长了一些,最好是采用浏览的方式。很多人觉得下面的方法很有效:先快速通读一遍,然后选取其中与自己当前研究项目有关的部分仔细研究。本文档被粗略地分为两部分。第一部分涉及研究者所需具备的各种技能:阅读,写作和程序设计,等等。第二部分讨论研究过程本身:研究究竟是怎么回事,如何做研究,如何选题和选导师,如何考虑研究中的情感因素。很多读者反映,从长远看,第二部分比第一部分更有价值,也更让人感兴趣。.. 小节2 如何通过阅读打好AI研究的基础。列举了重要的AI期刊,并给出了一些阅读的诀窍。 .. 小节3 如何成为AI研究领域的一员:与相关人员保持联系,他们可以使你保持对研究前沿的跟踪,知道应该读什么材料。 .. 小节4 学习AI相关领域的知识。对几个领域都有基本的理解,对于一个或者两个领域要精通。 .. 小节5 如何做研究笔记。.. 小节6 如何写期刊论文和毕业论文。如何为草稿写评审意见,如何利用别人的评审意见。如何发表论文。.. 小节7 如何做研究报告。.. 小节8 是有关程序设计的。AI程序设计与平常大家习惯的程序设计有所不同。.. 小节9 有关研究生涯最重要的问题,如何选导师。不同的导师具有不同的风格,本节的意见有助于你找到合适的导师。导师是你必须了解如何利用的资源。.. 小节10 关于毕业论文。毕业论文将占据研究生生涯的大部分时间,本部分涉及如何选题,以及如何避免浪费时间。.. 小节11 有关研究方法论,尚未完成。.. 小节12 或许是最重要的一节:涉及研究过程中的情感因素,包括如何面对失败,如何设定目标,如何避免不安全感,保持自信,享受快乐。2. 阅读 很多研究人员花一半的时间阅读文献。从别人的工作中可以很快地学到很多东西。本节讨论的是AI中的阅读,在第四小节将论述其他主题相关的阅读。阅读文献,始于今日。一旦你开始写作论文,就没有多少时间了,那时的阅读主要集中于论文主题相关的文献。在研究生的头两年,大部分的时间要用于做课程作业和打基础。此时,阅读课本和出版的期刊文章就可以了。(以后,你将主要阅读文章的草稿,参看小节三)。在本领域打下坚实的基础所需要的阅读量,是令人望而却步的。但既然AI只是一个很小的研究领域,因此你仍然可以花几年的时间阅读本领域已出版的数量众多论文中最本质的那部分。一个有用的小技巧是首先找出那些最本质的论文。此时可以参考一些有用的书目:例如研究生课程表,其他学校(主要是斯坦福大学)研究生录取程序的建议阅读列表,这些可以让你有一些初步的印象。如果你对AI的某个子领域感兴趣,向该领域的高年级研究生请教本领域最重要的十篇论文是什么,如果可以,借过来复印。最近,出现了很多精心编辑的有关某个子领域的论文集,尤其是Morgan-Kauffman出版的。AI实验室有三种内部出版物系列:Working Papers,Memos和Technical Reports,正式的程度依次增加,在八层的架子上可以找到。回顾最近几年的出版物,将那些非常感兴趣的复制下来。这不仅是由于其中很多都是意义重大的论文,对于了解实验室成员的工作进展也是很重要的。有关AI的期刊有很多,幸运的是,只有一部分是值得看的。最核心的期刊是Artificial Intelligence,也有写作the Journal of Artificial Intelligence或者AIJ的。AI领域真正具备价值的论文最终都会投往AIJ,因此值得浏览每一年每一期的AIJ;但是该期刊也有很多论文让人心烦。Computational Intelligence是另外一本值得一看的期刊。Cognitive Science也出版很多意义重大的AI论文。Machine Learning是机器学习领域最重要的资源。IEEE PAMI(Pattern
文档评论(0)