- 1、本文档共33页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《Chapter13ExploitingSQLAzureDatabasesRelational》.doc
Chapter 13: Exploiting SQL Azure Databases Relational Features
Cloud-based relational database management systems (RDBMSs) are relatively uncommon because they are difficult to implement with the enterprise-grade scale-out and availability capabilities IT departments have come to expect from traditional schemaless Entity-Attribute-Value (EAV) data stores, such as the Google App Engine’s datastore and Amazon Web Services’ SimpleDB. Google offers an SQL-like query dialect called GQL and Amazon provides a set of SimpleDB API calls to emulate simple SQL-like SELECT statements. Neither of these query “languages” approaches the capability of ANSI SQL to deliver complex result sets tailored to a particular structure and having a precise, predictable composition. These tables also lack the notion of relational INNER or OUTER JOINs, but the App Engine’s datastore can emulate many:one associations with db.Key and one:many associations with list(db.Key) data types.
type=note
The “Comparing Google App Engine, Amazon SimpleDB and Microsoft SQL Server Data Services” post of May 6, 2008 to the OakLeaf Systems blog (http://bit.ly/LtvxN, /2008/04/comparing-google-app-engine-amazon.html) describes differences in the capabilities of these three EAV datastores at the time. SQL Server Data Services (renamed SQL Data Services when this book was written) will be retired when Microsoft releases SQL Azure as a commercial product in late 2009.
Before you can query relational or EAV cloud-based tables, you must specify a relational schema or define entities and their properties, as well as populate tables or entity collections with data. Most early cloud databases or datastores will be based on schemas of on-premises databases and contain at least a nominal amount of historical data. Undoubtedly, getting data-intensive applications up and running in the cloud will be faster and simpler with an RDBMS rather than EAV tables as the datastore. This chapter covers migrating schemas and data from
您可能关注的文档
- 《2016-2018年云南省现代农业生猪产业技术体系建设生猪营养》.doc
- 《2016农村公路(第二批)安全生命防护工程设计》.doc
- 《2016年7月广东省高等教育自学考试各专业开考课程考试时间》.doc
- 《2016年S330(56省道)瑞东线公路养护大中修工程》.doc
- 《2016年“内蒙古师范大学杯”全国健美操联赛(呼和浩特站)》.doc
- 《2016年全国研究生招生调剂咨询会相关事项及参会回执》.doc
- 《2016年十月自学考试用书目录》.doc
- 《2016年国家卫生计生委流动人口服务中心》.doc
- 《2016年孝感市医用耗材集中招标采购》.doc
- 《2016年广东省大学生电子设计竞赛实施方案》.doc
文档评论(0)