网站大量收购闲置独家精品文档,联系QQ:2885784924

旅行商问题的求解方法(动态规划法和贪心法)算法论文-本科毕设论文.doc

旅行商问题的求解方法(动态规划法和贪心法)算法论文-本科毕设论文.doc

  1. 1、本文档共18页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
旅行商问题的求解方法(动态规划法和贪心法)算法论文-本科毕设论文

旅行商问题的求解方法 摘要 旅行商问题(TSP问题)时是指旅行家要旅行n个城市然后回到出发城市,要求各个城市经历且仅经历一次,并要求所走的路程最短。该问题又称为货郎担问题、邮递员问题、售货员问题,是图问题中最广为人知的问题。本文主要介绍用蛮力法、动态规划法、贪心法和分支限界法求解TSP问题,其中重点讨论动态规划法和贪心法,并给出相应求解程序。 关键字:旅行商问题;动态规划法;贪心法;分支限界法 1引言 旅行商问题(TSP)是组合优化问题中典型的NP-完全问题,是许多领域内复杂工程优化问题的抽象形式。研究TSP的求解方法对解决复杂工程优化问题具有重要的参考价值。关于TSP的完全有效的算法目前尚未找到,这促使人们长期以来不断地探索并积累了大量的算法。归纳起来,目前主要算法可分成传统优化算法和现代优化算法。在传统优化算法中又可分为:最优解算法和近似方法。最优解算法虽然可以得到精确解,但计算时间无法忍受,因此就产生了各种近似方法,这些近似算法虽然可以较快地求得接近最优解的可行解,但其接近最优解的程度不能令人满意。但限于所学知识和时间限制,本文重点只讨论传统优化算法中的动态规划法、贪心法和分支限界法,并对蛮力法做简单介绍,用以比较。 2正文 2.1蛮力法 2.1.1蛮力法的设计思想 蛮力法所依赖的基本技术是扫描技术,即采用一定的策略将待求解问题的所有元素一次处理一次,从而找出问题的解。一次处理所有元素的是蛮力法的关键,为了避免陷入重复试探,应保证处理过的元素不再被处理。在基本的数据结构中,一次处理每个元素的方法是遍历。 2.1.2算法讨论 用蛮力法解决TSP问题,可以找出所有可能的旅行路线,从中选取路径长度最短的简单回路。如对于图1,我们求解过程如下: 路径:1-2-3-4-1;路径长度:18; 路径:1-2-4-3-1;路径长度:11; 路径:1-3-2-4-1;路径长度:23; 路径:1-3-4-2-1;路径长度:11; 路径:1-4-2-3-1;路径长度:18; 路径:1-4-3-2-1;路径长度:18; 从中,我们可以知道,路径(2)和(4)路径长度最短。 我们还应注意到,图1中,有3对不同的路径,对每对路径来说,不同只是路径的方向,因此,可以将这个数量减半,则可能的解有(n-1)!/2个。这是一个非常大的数,随着n的增长,TSP问题的可能解也在迅速增长。如: 一个10城市的TSP问题有大约有180,000个可能解。一个20城市的TSP问题有大约有60,000,000,000,000,000个可能解。 一个50城市的TSP问题有大约1062个可能解,而一个行星上也只有1021升水。因此,我们可以知道用蛮力法求解TSP问题,只能解决问题规模很小的实例。 2.2动态规划法 2.2.1动态规划法的设计思想 动态规划法将待求解问题分解成若干个相互重叠的子问题,每个子问题对应决策过程的一个阶段,一般来说,子问题的重叠关系表现在对给定问题求解的递推关系(也就是动态规划函数)中,将子问题的解求解一次并填入表中,当需要再次求解此子问题时,可以通过查表获得该子问题的解而不用再次求解,从而避免了大量重复计算。 2.2.2TSP问题的动态规划函数 假设从顶点i出发,令表示从顶点i出发经过中各个顶点一次且仅一次,最后回到出发点i的最短路径长度,开始时,,于是,TSP问题的动态规划函数为: 2.2.3算法讨论 (1)for (i=1; iN; i++) //初始化第0列 d[i][0]=c[i][0]; (2)for (j=1; j -1; j++) for (i=1; in; i++) //依次进行第i次迭代 if (子集V[j]中不包含i) 对V[j]中的每个元素k,计算V[m] == V[j]-k; d[i][j]=min(c[i][k]+d[k][m]); (3)对V[ -1]中的每一个元素k,计算V[m] == V[ -1]-k; d[0][ -1]=min(c[0][k]+d[k][m]); (4)输出最短路径长度d[0][ -1]; 2.3.4时间复杂性 和蛮力法相比,动态规划法求解TSP问题,把原来的时间复杂性是O(n!)的排列问题,转化为组合问题,从而降低了算法的时间复杂性,但它仍需要指数时间。 2.3贪心法 2.3.1贪心法的设计思想 贪心法在解决问题的策略上目光短浅,只根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都不会改变。换言之,贪心法并不是从整体最优考虑,它所做出的选择只是在某种意义上的局部最优。这种局部最优选择并不总能获得整体最优解,但通常能获得近似

文档评论(0)

海纳百川 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档