- 1、本文档共47页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
先建立原型函数: function y=f1(a,x) y=a(1)*x+a(2)*x.^2.*exp(-a(3)*x)+a(4); 在命令窗口中输入: x=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0]; y=[2.3201 2.647 2.9707 3.2885 3.6008 3.909 4.2147 4.5191 4.8232 5.1275]; a=lsqcurvefit(‘f1’,[1;2;2;2],x,y) 曲线拟合问题最常用的解法——线性最小二乘法的基本思路 第一步:先选定一组函数 r1(x), r2(x), …,rm(x), mn, 令 f(x)=a1r1(x)+a2r2(x)+ …+amrm(x) (1) 其中 a1,a2, …,am 为待定系数. 第二步: 确定a1,a2, …,am 的准则(最小二乘准则): 使n个点(xi,yi) 与曲线 y=f(x) 的距离?i 的平方和最小 . 记 问题归结为,求 a1,a2, …,am 使 J (a1,a2, …,am) 最小. 用MATLAB作线性最小二乘拟合 1. 作多项式f(x)=a1xm+ …+amx+am+1拟合,可利用已有程序: a=polyfit(x,y,m) 输入同长度 的数组x,y 拟合多项 式次数 2.多项式在x处的值y可用以下命令计算: y=polyval(a,x) 1)输入以下命令: x=0:0.1:1; y=[-0.447 1.978 3.28 6.16 7.08 7.34 … 7.66 9.56 9.48 9.30 11.2]; A=polyfit(x,y,2) z=polyval(A,x); plot(x,y,k+,x,z,r) %作出数据点和拟合曲线的图形 2)计算结果: A = -9.8108 20.1293 -0.0317 用多项式拟合的命令 MATLAB(zxec2) 如何预报人口的增长 人口的增长是当前世界上引起普遍关注的问题,并且我们会发现在不同的刊物预报同一时间的人口数字不相同,这显然是由于用了不同的人口模型计算的结果。 我国是世界第一人口大国,基本上地球每九个人中就有一个中国人。有效地控制我国人口的增长是使我过全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要。而有效控制人口增长的前提是要认识人口数量的变化规律,建立人口模型,作出较准确的预报。 例:如何预报人口的增长 例如:1949年—1994年我国人口数据资料如下: 年 份xi 1949 1954 1959 1964 1969 1974 1979 1984 1989 1994 人口数yi 5.4 6.0 6.7 7.0 8.1 9.1 9.8 10.3 11.3 11.8 建模分析我国人口增长的规律,预报1999年我国人口数。 模型一:假设人口随时间线性地增加 模型: 参数估计观测值的模型: 拟合的精度: 误差平方和。 可以算出:a = -283.2320 b=0.1480 模型:y = – 1.93 + 0.146 x 则可看成是线性方程,用 polyfit命令计算得: 模型二:指数增长模型 可变为 Y A = + BX a=2.33, b=0.0179 则所求模型为: 程序如下: x=[1949 1954 1959 1964 1969 1974 1979 1984 1989 1994]; y=[5.4 6.0 6.7 7.0 8.1 9.1 9.8 10.3 11.3 11.8 ]; a=polyfit(x,y,1); x1=[1949:10:1994]; y1=a(2)+a(1)*x1; b=polyfit(x,log(y),1); y2=exp(b(2))*exp(b(1)*x1); plot(x,y,*) hold on plot(x1,y1,--r) hold on plot(x1,y2,-k) legend(原曲线,模型一曲线,模型二曲线) 结论的比较如下表: 年 份 xi 1949 1954 1959 1964 1969 1974 1979 1984 1989 1994 人口数 yi 5.4 6.0 6.7 7.0 8.1 9.1 9.8 10.3 11.3 11.8 模型一值 5.24 5.97 6.70 7.43
文档评论(0)