- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
三、简述增强材料(增强体、功能体)在复合材料中所起的作用,并举例说明。
填充:廉价、颗粒状填料,降低成本。例:PVC中添加碳酸钙粉末。 增强:纤维状或片状增强体,提高复合材料的力学性能和热性能。效果取决于增强体本身的力学性能、形态等。例:TiC颗粒增强Si3N4复合材料、碳化钨/钴复合材料,切割工具;碳/碳复合材料,导弹、宇航工业的防热材料(抗烧蚀),端头帽、鼻锥、喷管的喉衬。 赋予功能:赋予复合材料特殊的物理、化学功能。作用取决于功能体的化学组成和结构。例:1-3型PZT棒/环氧树脂压电复合材料,换能器,用于人体组织探测。
四、复合材料为何具有可设计性?简述复合材料设计的意义。如何设计防腐蚀(碱性)玻璃纤维增强塑料?
组分的选择、各组分的含量及分布设计、复合方式和程度、工艺方法和工艺条件的控制等均影响复合材料的性能,赋予了复合材料性能的可设计性。 意义:①每种组分只贡献自己的优点,避开自己的缺点。②由一组分的优点补偿另一组分的缺点,做到性能互补。③使复合材料获得一种新的、优于各组分的性能(叠加效应)。优胜劣汰、性能互补、推陈出新。 耐碱玻璃纤维增强塑料的设计:使用无碱玻璃纤维和耐碱性树脂(胺固化环氧树脂)。在保证必要的力学性能的前提下,尽量减少玻璃纤维的体积比例,并使树脂基体尽量保护纤维不受介质的侵蚀。
五、简述复合材料制造过程中增强材料的损伤类型及产生原因。力学损伤:属于机械损伤,与纤维的脆性有关。脆性纤维(如陶瓷纤维)对表面划伤十分敏感,手工操作、工具操作,纤维间相互接触、摆放、缠绕过程都可能发生。化学损伤:主要为热损伤,表现为高温制造过程中,增强体与基体之间化学反应过量,增强体中某些元素参与反应,增强体氧化。化学损伤与复合工艺条件及复合方法有关。热损伤伴随着增强体与基体之间界面结构的改变,产生界面反应层,使界面脆性增大、界面传递载荷的能力下降。
六、简述复合材料增强体与基体之间形成良好界面的条件。在复合过程中,基体对增强体润湿;增强体与基体之间不产生过量的化学反应;生成的界面相能承担传递载荷的功能。复合材料的界面效应,取决于纤维或颗粒表面的物理和化学状态、基体本身的结构和性能、复合方式、复合工艺条件和环境条件。
一、什么是相乘效应?举例说明。
两种具有转换效应的材料复合在一起,产生了连锁反应,从而引出新的机能。可以用通式表示:X/Y·Y/Z=X/Z(式中X、Y、Z分别表示各种物理性能)。压磁效应(磁阻效应=压敏电阻效应;闪烁效应(光导效应=辐射诱导导电。例:磁电效应(对材料施加磁场产生电流)——传感器,电子回路元件中应用。
压电体BaTiO3与磁滞伸缩铁氧体NiFe2O4烧结而成的复合材料。对该材料施加磁场时会在铁氧体中产生压力,此压力传递到BaTiO3,就会在复合材料中产生电场。最大输出已达103 V·A。
单一成分的Cr2O3也有磁电效应,但最大输出只有约170 V·A。
四、什么是材料复合的结构效果?试述其内涵。
结构效果是指在描述复合材料的性能时,必须考虑组分的几何形态、分布形态和尺度等可变因素。这类效果往往可以用数学关系描述。结构效果包括1、几何形态效果(形状效果):决定因素是组成中的连续相。对于1维分散质,当分散质的性质与基体有较大差异时,分散质的性能可能会对复合材料的性能起支配作用。2、分布形态效果(取向效果):又可分为几何形态分布(几何体的取向)和物理性能取向:导致复合材料性能的各向异性,对复合材料的性能有很大影响。3、尺度效果:影响材料表面物理化学性能(比表面积、表面自由能)、表面应力分布和界面状态,导致复合材料性能的变化。
五、简述单向复合材料的细观力学分析模型的基本假设的要点。
单元体:宏观均匀、无缺陷、增强体与基体性能恒定、线弹性。 增强体:匀质、各向同性、线弹性、定向排列、连续。 基体:匀质、各向同性、线弹性。 界面:粘结完好(无孔隙、滑移、脱粘等)、变形协调。
八、比较弥散增强原理和颗粒增强原理的异同点。1、承担载荷的物质有异:弥散增强原理:基体承担载荷。
颗粒增强原理:基体承担主要的载荷,颗粒也承受载荷并约束基体的变形。
2、颗粒大小及体积分数有异:弥散增强原理:Vp=0.01-0.15,dp=0.001(m-0.1(m。
颗粒增强原理:颗粒尺寸较大(1(m)、颗粒坚硬。颗粒直径为1-50(m,颗粒间距为1-25(m,颗粒的体积分数为0.05-0.5。颗粒强化效果类似:颗粒阻止基体中位错运动的能力愈大,增强效果愈好。微粒尺寸愈小,体积分数愈高,强化效果愈好。
十一、垂直于纤维扩展的裂纹需要克服哪些断裂能?对于脆性纤维/脆性基体复合材料,需要克服的断裂功:纤维拔出和纤维断裂(吸收能量)、纤维与基体的脱胶(纤维与基体的界面较弱时:消耗贮存的应变能)、应力松弛(纤维断裂时:消耗贮存的应变能)、纤
文档评论(0)