复杂网络的自相似性研究课件.pptVIP

  1. 1、本文档共32页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
复杂网络的自相似性研究 报告人:陶少华 导 师:刘玉华教授 2006年1月 引言 复杂网络模型简介 复杂网络的自相似性研究 仿真分析 结论 参考文献 1.引言 1960年数学家Erdos和Renyi提出了随机图理论,研究复杂网络中随机的拓扑模型,自此ER模型一直是研究复杂网络的基本模型。但是,但是近年的研究发现:现实网络中得到的许多实验数据结果与随机图模型并不符合,因此需要新的网络模型合理描述实际网络。1998年Watts和Strgatz提出了小世界(WS)模型[2],刻画了真实的网络所兼有的大聚簇和短平均路径距离的特性。然而现实世界中的网络还被统计到极少数接点拥有大量的连接,而众多的接点仅具有少量连接的特性,这些也无法用随机图模型加以合理解释。 1999年Barabasi和Albert提出了无尺度模型(BA)[3]。BA模型指出了决定互联网、万维网等网络具有无尺度模型的两个基本原理:增长性和择优连接。虽然小世界网络与无尺度网络刻画了网络的基本特性,但它们是基于对现实网络进行简化的前提下得到的结果。因此我们有必要对复杂网络建模进行深入研究,使它更加符合现实世界。本文提出了网络的自相似性,网络通过节点与节点相连汇聚形成,节点与节点之间是通过某种共性而连接在一起的。如人际关系之间的“物以类聚,人以群分”。 。 2 .复杂网络模型简介 复杂网络就是具有复杂拓扑结构和动力行为的大规模网络,它是由大量的节点通过边的相互连结而构成的图。根据不同的拓扑结构复杂网络可以分为规则网络,随机网络,小世界网络,无尺度网络等等 。 2.1 小世界网络模型 1998年,Watts 和Strogatz提出了小世界网络模型。这个模型介于规则网络和随机网络之间并在他们之间起桥梁作用。建立网络模型步骤如下 : 初始化:从具有个 节点的环形网络开始,其中每一节点都与它初始的 个邻居相连(在每一边有 个邻居)。 随机化:以概率 随机为规则网络的每条边重新连线,同时保证没有自连结和重连边,这一过程引进 条长距离捷径(重新连结的边)边,它们连结那些拥有不同邻居的部分节点。当 =0时,对就的为网络规则图,当 时 ,对应的为随机网络图,当 介于(0,1)区间任意值时,模型显示出小世界特性 。 小世界网络的主要特点: 度分布为指数分布且峰值取平均值,每个节点有大致相同数目的连结数,平均路径短且聚集系数大如图,其中 为平均路径, 为聚集系数。小世界网络介于规则网络和随机网络之间,它实现了从规则到完全随机之间的连续演变。 2.2 无尺度网络模型 1999年,Barabasi和Albert提出了无尺度网络模型,它通过增加新的节点而实现连续增长,同时这些新的节点总是倾向于选择连结已经具有大量连结的节点。BA模型具体描述如下: 增长性:假设网络最初有 个节点。每一次加入一个新节点,每次加入的新节点通过 条新加入的连结边与网络中已有的 个节点相连。 优先连结:我们假设每个新节点与节点 相连的概率 都依赖于节点 的度 ,并且这个概率服从如下的规则: 根据上述步骤重复 次后得到一个有 个节点和 条边的网络 。 在1999年.Barabási,与Albert用数量模拟表明具有k条边的节点的概率服从指数为r=3的幂律分布,如图3: 无尺度网络的主要特点为度分布为幂律分布,极少数节点有大量的连结,而大多数节点只有很少的连结。同时,无尺度还具有某些重要特性,可以承受意外的故障,但对恶意攻击却很脆弱。 3. 自相似性复杂网络 3.1问题的提出 虽然小世界网络、无尺度网络比较准确地把握了现实世界中网络最基本的特性,但它们仍然存在一定的局限性。在现实世界中一些网络常常并不具有幂律特征,如指数中止、小变量饱和等。为了在微观层面更深入研究复杂网络的拓扑结构和演化规律,研究人员作了大量新的尝试和努力,对网络的演化与建模已经有了长足的进展,演化因素包括各种类型的择优连接、局域世界、适应度[4]、竞争等。 尽管众多的网络演化模型已经被用来分析和研究可能潜藏的演化规律,但这些研究仍然忽视了一些重要因素。例如计算机网络节点之间的连接。如果是按照择优连接概率:则新的节点会全部连接到同一个节点上,但现实网络并非如此,而是形成不同的集散节点。这个例子说明了网络节点之间的连接有可能是基于一些相似的性质,节点与节点之间有某种共性才相连。因此建立并研究基于相似性的网

文档评论(0)

lifang365 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档