UploadFiles201196104316888.ppt.ppt

  1. 1、本文档共33页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
UploadFiles201196104316888.ppt.ppt

各种蓝宝石长晶方法介绍 为何使用蓝宝石当 LED衬底材料 可用于LED衬底的材料主要有硅、碳化硅、蓝宝石、氮化镓等。由于硅单晶和氮化镓晶格匹配太差无无法商业化应用;碳化硅单晶成本价格较高,目前市价约是蓝宝石晶体的5倍以上,且只有美国科瑞公司掌握成熟技术,目前占市场应用不到10%;氮化镓单晶制备更是困难,虽然同质外延质量最好,但价格是蓝宝石晶体的数百倍。综上所述,预计在未来10到30年范围,蓝宝石单晶是LED衬底材料的理想选择 单晶蓝宝石长晶方法 蓝宝石单晶的制备工艺路线较多,其中比较典型有以下几种 提拉法(CZ) 坩埚下降法 热交换法(HEM) 泡生法(KY) 除了以上几项主流的方法外,还有温度梯度法(TGT)、焰熔法、导模法(EFG)、水平结晶法(HDC)…等 提拉法(CZ) 柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭. 有关工艺参数控制 1) 加热方式 提拉法生长晶体的加热方法一般采用电阻加热和高频感应加热,在无坩埚生长时可采用激光加热、电子束加热、等离子体加热和弧光成像加热等加热方式 电阻加热的优点是成本低,可使用大电流、低电压的电源,并可以制成各种形状的加热器;高频加热可以提供较干净的环境,时间响应快,但成本高 2) 晶体直径的控制 提拉法生长的晶体直径的控制方法很多,有人工直接用眼睛观察进行控制,也有自动控制。自动控制的方法目前一般有利用弯月面的光反射、晶体外形成像法、称重等法 提拉法生长晶体的优点 1) 在生长过程中,可以直接观察晶体的生长状况,这为控制晶体外形提供了有利条件 2) 晶体在熔体的自内表面处生长,而不与坩埚相接触,能够显著减小晶体的应力并防止坩埚壁上的寄生成核 3) 可以方便地使用定向籽晶的和“缩颈”工艺,得到不同取向的单晶体,降低晶体中的位错密度,减少镶嵌结构,提高晶体的完整性 提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。例如,提拉法生长的红宝石与焰熔法生长的红宝石相比,具有效低的位错密度,较高的光学均匀性,也没有镶嵌结构。 提拉法生长晶体的缺点 1) 一般要用坩埚作容器,导致熔体有不同程度的污染 2) 当熔体中含有易挥发物时,则存在控制组分的困难 3) 适用范围有一定的限制。例如,它不适于生长冷却过程中存在固态相变的材料,也不适用于生长反应性较强或熔点极高的材料,因为难以找到合适的坩埚来盛装它们 总之,提拉法生长的晶体完整性很高,面其生长速率和晶体尺寸也是令人满意的。设计合理的生长系统、精确面稳定的温度控制、熟练的操作技术是获得高质量晶体的重要前提条件 坩埚下降法 该方法的创始人是P.W.Bridgman,论文发表于1925年。 D.C.Stockbarger曾对这种方法的发展作出了重要的推动,因此这种方法也可以叫做布里奇曼-斯托克巴杰方法,简称B-S方法。 该方法的特点是使熔体在坩埚中冷却而凝固。坩埚可以垂直放置,也可以水平放置(使用“舟”形坩埚),如下图所示。生长时,将原料放入具有特殊形状的坩埚里,加热使之熔化。通过下降装置使坩埚在具有一定温度梯度的结晶炉内缓缓下降,经过温度梯度最大的区域时,熔体便会在坩埚内自下由上地结晶为整块晶体。 坩埚下降法原理 下降法一般采用自发成核生长晶体,其获得单晶体的依据就是晶体生长中的几何淘汰规律,原理如下图所示。在一根管状容器底部有三个方位不同的晶核A、B、C,其生长速度因方位不同而不同。假设晶核B的最大生长速度方向与管壁平行,晶核A和C则与管壁斜交。由图中可以看到,在生长过程中,A核和C核的成长空间因受到B核的排挤而不断缩小,在成长一段时间以后终于完全被B核所湮没,最终只剩下取向良好的B核占据整个熔体而发展成单晶体,这一现象即为几何淘汰规律 为了充分利用几何淘汰规律,提高成品率,人们设计了各种各样的坩埚。如左图所示。其目的是让坩埚底部通过温度梯度最大的区域时,在底部形成尽可能少的几个晶核,而这几个晶核再经过几何淘汰,剩下只有取向优异的单核发展成晶体。经验表明,坩埚底部的形状也因晶体类型不同而有所差异。 坩埚下降法的优点 1) 由于可以把原料密封在坩埚里,减少了挥发造成的泄漏和污染,使晶体的成分容易控制 2) 操作简单,可以生长大尺寸的晶体。可生长的晶体品种也很多,且易实现程序化生长 3) 由于每一个坩埚中的熔体都可以单独成核,这样可以在一个结晶炉中同时放入若干个坩埚,或者在一个大坩埚里

文档评论(0)

ailuojue + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档