- 1、本文档共12页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
主成分分析法原理应用和计算步骤.doc
一、概述
在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠
二、基本原理
主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP(比如p个指标),重新组合成一组较少个数的互不相关的综合指标Fm来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。
设F1表示原变量的第一个线性组合所形成的主成分指标,即,由数学知识可知,每一个主成分所提取的信息量可用其方差来度量,其方差Var(F1)越大,表示1包含的信息越多。因此在所有的线性组合中选取的1应该是1,X2,…,XP的所有线性组合中方差最大的,故称1为第一主成分如果第一主成分不足以代表原来个指标的信息,再考虑选取2,为有效地反映原信息,1已有的信息就不需要再出现2中,2与F1要保持独立、不相关,用数学语言表达就是Cov(F1, F2)=0,1不相关的X1,X2,…,XP的所有线性组合中方差最大的,故称2为第二主成分,依此类推构造出……、Fm为原变量指标X1、X2……XP第……、第个主成分。
根据以上分析得知:
(1) Fi与Fj互不相关,即Cov(Fi,Fj) = 0,并有Var(Fi)=ai’Σai,其中Σ为X的协方差阵
(2)F1是X1,X2,…,Xp的一切线性组合(系数满足上述要求)中方差最大的,……,即Fm是与F1,F2,……,Fm-1都不相关的X1,X2,…,XP的所有线性组合中方差最大者。
F1,F2,…,Fm(m≤p)为构造的新变量指标,即原变量指标的第第个主成分i(i=1,2,…,m)关于原变量Xj(j=1,2 ,…, p)的表达式,即系数( i=1,2,…,m; j=1,2 ,…,p)。从数学上可以证明,原变量协方差矩阵的特征根是主成分的方差,所以前m个较大特征根就代表前m个较大的主成分方差值;原变量协方差矩阵前m个较大的特征值(这样选取才能保证主成分的方差依次最大)所对应的特征向量就是相应主成分Fi表达式的系数,为了加以限制,系数启用的是对应的单位化的特征向量,即有= 1。
(2)计算主成分载荷,主成分载荷是反映主成分Fi与原变量Xj之间的相互关联程度:
三、主成分分析法的计算步骤
主成分分析的具体步骤如下:
(1)计算协方差矩阵
计算样品数据的协方差矩阵:Σ=(sij)p(p,其中
i,j=1,2,…,p
(2)求出Σ的特征值及相应的正交化单位特征向量
Σ的前m个较大的特征值(1((2(…(m0,就是前m个主成分对应的方差,对应的单位特征向量就是主成分Fi的关于原变量的系数,则原变量的第i个主成分Fi为:
Fi =X
主成分的方差(信息)贡献率用来反映信息量的大小,为:
(3)选择主成分
最终要选择几个主成分,即F1,F2,……,Fm中m的确定是通过方差(信息)累计贡献率G(m)来确定
当累积贡献率大于85%时,就认为能足够反映原来变量的信息了,对应的m就是抽取的前m个主成分。
(4)计算主成分载荷
主成分载荷是反映主成分Fi与原变量Xj之间的相互关联程度,原来变量Xj(j=1,2 ,…, p)在诸主成分Fi(i=1,2,…,m)上的荷载 lij( i=1,2,…,m; j=1,2 ,…,p)。:
在SPSS软件中主成分分析后的分析结果中,“成分矩阵”反应的就是主成分载荷矩阵。
(5)计算主成分得分
计算样品在m个主成分上的得分:
i = 1,2,…,m
实际应用时,指标的量纲往往不同,所以在主成分计算之前应先消除量纲的影响。消除数据的量纲有很多方法,常用方法是将原始数据标准化,即做如下数据变换:
其中:,
根据数学公式知道,①任何随机变量对其作标准化变换后,其协方差与其相关系数是一回事,即标准化后的变量协方差矩阵就是其相关系数矩阵。②另一方面,根据协方差的公式可以推得标准化后的协方差就是原变量的相关系数,亦即,标准化后的变量的协方差矩阵就是原变量的相关系数矩阵。也就是说,在标准化前后变量的相关系数矩阵不变化。
根据以上论述,为消除量纲的影响,将变量标准化后再计算其协方差矩阵,就是直接计算原变量的相关系数矩阵,所以主成分分析的实际常用计算步骤是:
☆计算相关系数矩阵
☆求出相关系数矩阵的特征值及相应的正交化单位特征向量
☆选择主成分
☆计算主成分得分
总结:原指标相关系数矩阵相应的特征值(i为主成分方差的贡献,方差的贡献率为 ,越大,说明相应的主成分反映综合信息的能力越强,可根据(i的大小来提取主成分。每一个主成分的组合系数(原变量在该主成分上的载荷)就是相应特征值(i所对应的单位
您可能关注的文档
- 中国艺术创作院.ppt.ppt
- 中国著名教育家陶行知.doc
- 中国袋式除尘器主机和配件目前情况分析.pptx
- 中国资源现状和前景分析.doc
- 中国车载空气净化器行业市场深度调查和投资商机研究咨询报告.docx
- 中国近代化问题2.doc
- 中国近代史——日本在华的殖民罪行和残暴统治.ppt
- 中国近代史学科学化进程的研究(1902—1949年).doc
- 中国近代史教学建议.doc
- 中国近代落后原因和应吸取教训.doc
- 2025年十大战略技术趋势-Gartner-20241124.pptx
- 中国房地产企业监测报告(2024年10月)-中指研究院-2024-38页3.pdf
- 机器人产业链深度解析.pdf
- 小米2024Q3财报-2024-11-新势力.pdf
- 慧博智能投研-具身智能行业深度:发展趋势、市场机遇、产业链及相关企业深度梳.pdf
- 主课件-一分钟经理人(含实践篇).pptx
- IPP国际绩效改进师-初级认证项目简介.pdf
- FESCO+2022-2023健康管理行业及其人才与人力资源服务需求分析-93页.pdf
- A股能演绎2013年以来的日本股市长牛吗?.pdf
- AI+教育:大模型引领全场景智能化革新.pdf
最近下载
- 鼎信JB-QT-TS3200火灾报警控制器(联动型)安装使用说明书 XF2.900.029AS Ver.pdf VIP
- 《文献检索与毕业论文写作(第四版)》教学课件.pptx
- 食品包装学:其它食品包装专用技术.ppt VIP
- 南芯产品规格书SC8886.pdf
- 作业6:工学一体化课程《小型网络安装与调试》任务1学习任务分析表.docx VIP
- 栈桥吊装方案.docx
- 2024四川遂宁市射洪市财政局市属国有企业招聘31人笔试备考试题及答案解析.docx
- 八年级下册信息技术第一单元《算法与程序设计》课件.pptx
- 探索校本课程中实验室教学资源的利用与开发(教育学范文).doc
- 解读2024年《关于加快经济社会发展全面绿色转型的意见》课件.pptx VIP
文档评论(0)