- 1、本文档共123页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
本章内容结构 §3.1 随机过程的基本概念 §3.2平稳随机过程 §3.3 高斯随机过程 §3.4 平稳随机过程通过线性系统 §3.5 窄带随机过程 §3.6 正弦波加窄带高斯噪声 §3.7 高斯白噪声和带限白噪声 §3.8 小结 §3.0 概率论基础复习 1、随机变量的概念 (1)样本空间的概念:在随机实验中,所有可能的结果的集合(例如抛1次硬币,其样本空间为{正面,反面}) (2)随机变量的概念:对于一个样本空间,若每一个元素有一个随机的单值与之对应,则称之为随机变量(例如,抛硬币如果是正面我们用+1表示,反面用-1表示,+1或-1就是这个实验的随机变量,通常记为ξ) 2、随机变量的统计特性(即概率分布) (1)离散型随机变量 常用分布律来表示,如抛硬币的分布律为 (2)连续型随机变量 只能用分布函数和概率密度函数来描述 3、随机变量的数字特征 (1)数学期望E(即平均值) 对于离散随机变量: 对于连续随机变量: (2)方差D 对于离散随机变量: 对于连续随机变量: 3、随机变量的数字特征(续) (3)相关函数 无论是离散的还是连续的随机变量,两个随机变量的相关函数统一定义为 第3章 随机过程 3.1 随机过程的基本概念 什么是随机过程? 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度看: 角度1:对应不同随机试验结果的时间过程的集合。 第3章 随机过程 【例】n台示波器同时观测并记录这n台接收机的输出噪声波形 样本函数?i (t):随机过程的一次实现,是确定的时间函数。 随机过程:? (t) ={?1 (t), ?2 (t), …, ?n (t)} 是全部样本函数的集合。 通过热噪声的例子来理解随机过程 第3章 随机过程 角度2:随机过程是随机变量概念的延伸。 在任一给定时刻t1上,每一个样本函数?i (t)都是一个确定的数值?i (t1),但是每个?i (t1)都是不可预知的。 在一个固定时刻t1上,不同样本的取值{?i (t1), i = 1, 2, …, n}是一个随机变量,记为? (t1)。 换句话说,随机过程在任意时刻的值是一个随机变量。 因此,我们又可以把随机过程看作是在时间进程中处于不同时刻的随机变量的集合。 这个角度更适合对随机过程理论进行精确的数学描述。 3.1 随机过程的基本概念 随机过程是时间t的函数 在任意时刻观察,它是一个随机变量 随机过程是全部可能实现的总体 随机变量和随机过程的区别与关系 区别: 随机变量与随机过程的样本空间是不同的 这中区别体现在样本空间的数量上和性质上 关系: 随机过程在某一固定时刻的取值是一个随机变量 §3.1.1 随机过程的分布函数 由于随机过程由一系列随机变量组成 所以无法用某一随机变量的统计特征来描述整个随机的统计特性 于是人们定义了 一维概率分布函数和概率密度函数 二维概率分布函数和概率密度函数 。。。 N维概率分布函数和概率密度函数 第3章 随机过程 3.1.1随机过程的分布函数 设? (t)表示一个随机过程,则它在任意时刻t1的值? (t1)是一个随机变量,其统计特性可以用分布函数或概率密度函数来描述。 随机过程? (t)的一维分布函数: 随机过程? (t)的一维概率密度函数: 若上式中的偏导存在的话。 第3章 随机过程 随机过程? (t) 的二维分布函数: 随机过程? (t)的二维概率密度函数: 若上式中的偏导存在的话。 随机过程? (t) 的n维分布函数: 随机过程? (t) 的n维概率密度函数: 我国的降雨量分布图就是典型的二维密度函数的例子 第3章 随机过程 3.1.2 随机过程的数字特征 均值(数学期望): 在任意给定时刻t1的取值? (t1)是一个随机变量,其均值 式中 f (x1, t1) - ? (t1)的概率密度函数 由于t1是任取的,所以可以把 t1 直接写为t, x1改为x,这样上式就变为 第3章 随机过程 ? (t)的均值是时间的确定函数,常记作a ( t ),它表示随机过程的n个样本函数曲线的摆动中心 : 第3章 随机过程 方差 方差常记为? 2( t )。这里也把任意时刻t1直接写成了t 。 因为 所以,方差等于均方值与均值平方之差,它表示随机过程在时刻 t 对于均值a ( t )的偏离程度。 第3章 随机过程 相关函数 式中, ? (t1)和? (t2)分别是在t1和t2时刻观测得到的随机变量。可以看出,R(t1, t2)是两个变量t1和t2的确定函数。 协方差函数 式中 a ( t1 ) a ( t2 ) - 在t1和t2时刻得到的? (
文档评论(0)