第二章 回_分析基本方法.ppt

  1. 1、本文档共48页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第二章 回_分析基本方法

第二章 回归分析的基本方法 回归分析概述 线性回归模型及假定 线性回归模型的参数估计 §2.1 回归分析概述 (1)确定性关系或函数关系:研究的是确定现象非随机变量间的关系。 (2)统计依赖或相关关系:研究的是非确定现象随机变量间的关系。 对变量间统计依赖关系的考察主要是通过相关分析(correlation analysis)或回归分析(regression analysis)来完成的: ①不线性相关并不意味着不相关; ②有相关关系并不意味着一定有因果关系; ③回归分析/相关分析研究一个变量对另一个(些)变量的统计依赖关系,但它们并不意味着一定有因果关系。 ④相关分析对称地对待任何(两个)变量,两个变量都被看作是随机的。回归分析对变量的处理方法存在不对称性,即区分应变量(被解释变量)和自变量(解释变量):前者是随机变量,后者不是。 回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。 其用意:在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值。 这里:前一个变量被称为被解释变量(Explained Variable)或应变量(Dependent Variable),后一个(些)变量被称为解释变量(Explanatory Variable)或自变量(Independent Variable)。 回归分析关心的是根据解释变量的已知或给定值,考察被解释变量的总体均值,即当解释变量取某个确定值时,与之统计相关的被解释变量所有可能出现的对应值的平均值。 概念: 回归函数(PRF)说明被解释变量Y的平均状态(总体条件期望)随解释变量X变化的规律。 三、随机扰动项 (*)式称为一元总体回归函数(方程)PRF的随机设定形式。表明被解释变量除了受解释变量的系统性影响外,还受其他因素的随机性影响。 随机误差项主要包括下列因素的影响: 1)在解释变量中被忽略的因素的影响; 2)变量观测值的观测误差的影响; 3)模型关系的设定误差的影响; 4)其它随机因素的影响。 四、一元样本回归函数(SRF) 问题:能从一次抽样中获得总体的近似的信息吗?如果可以,如何从抽样中获得总体的近似信息? 该样本的散点图(scatter diagram): 样本散点图近似于一条直线,画一条直线以尽好地拟合该散点图,由于样本取自总体,可以该线近似地代表总体回归线。该线称为一元样本回归线(sample regression lines)。 这里将样本回归线看成总体回归线的近似替代 ▼回归分析的主要目的:根据样本回归函数SRF,估计总体回归函数PRF。 §2.2 线性回归模型 一、多元线性回归模型 二、多元线性回归模型的基本假定 一、多元线性回归模型 多元线性回归模型:表现在线性回归模型中的解释变量有多个。 一般表现形式: 二、多元线性回归模型的基本假定 假设1,解释变量是非随机的或固定的,且各X之间互不相关(无多重共线性)。 假设2,随机误差项具有零均值、同方差及不序列相关性 §2.3 线性回归模型的参数估计 估计方法:OLS、ML 一、普通最小二乘估计 对于随机抽取的n组观测值 二、最大似然估计 对于多元线性回归模型 三、参数估计量的性质 在满足基本假设的情况下,其结构参数?的普通最小二乘估计、最大似然估计及矩估计仍具有: 线性性、无偏性、有效性。 四、样本容量问题 所谓“最小样本容量”,即从最小二乘原理和最大或然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。 五、线性回归模型的参数估计实例 2、时间序列问题 上述实例表明,时间序列完全可以进行类似于截面数据的回归分析。 然而,在时间序列回归分析中,有两个需注意的问题: 第一,关于抽样分布的理解问题。 能把表2.3.1中的数据理解为是从某个总体中抽出的一个样本吗? 3、多元线性回归模型的参数估计实例 例2.3.3 在例2.3.2中,已建立了中国居民人均消费一元线性模型。这里我们再考虑建立多元线性模型。 ?样本回归函数的离差形式 i=1,2…n 其矩阵形式为 其中 : 在离差形式下,参数的最小二乘估计结果为 ?随机误差项?的方差?的无偏估计 可以证明,随机误差项?的方差的无偏估计量为 易知 Y的随机抽取的n组样本观测值的联合概率 即为变量Y的似然函数 对数似然函数为 对对

文档评论(0)

sb9185sb + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档