第八章 回归分.docVIP

  1. 1、本文档共22页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
? 第八章 回归分析 第一节 Linear过程 8.1.1 主要功能 8.1.2 实例操作 Curve Estimation过程 8.2.1 主要功能 8.2.2 实例操作 Logistic过程 8.3.1 主要功能 8.3.2 实例操作 Probit过程 8.4.1 主要功能 8.4.2 实例操作 Nonlinear过程 8.5.1 主要功能 8.5.2 实例操作 回归分析是处理两个及两个以上变量间线性依存关系的统计方法。在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。回归分析就是用于说明这种依存变化的数学关系。 ? 第一节 Linear过程 ? 8.1.1 主要功能 调用此过程可完成二元或多元的线性回归分析。在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。 ? 返回目录 返回全书目录 ? 8.1.2 实例操作 [例8.1]某医师测得10名3岁儿童的身高(cm)、体重(kg)和体表面积(cm2)资料如下。试用多元回归方法确定以身高、体重为自变量,体表面积为应变量的回归方程。 ? 儿童编号 体表面积(Y) 身高(X1) 体重(X2) 1 2 3 4 5 6 7 8 9 10 5.382 5.299 5.358 5.292 5.602 6.014 5.830 6.102 6.075 6.411 88.0 87.6 88.5 89.0 87.7 89.5 88.8 90.4 90.6 91.2 11.0 11.8 12.0 12.3 13.1 13.7 14.4 14.9 15.2 16.0 ? 数据准备 激活数据管理窗口,定义变量名:体表面积为Y,保留3位小数;身高、体重分别为X1、X2,1位小数。输入原始数据,结果如图8.1所示。 ? 图8.1 原始数据的输入 ? 统计分析 激活Statistics菜单选Regression中的Linear...项,弹出Linear Regression对话框(如图8.2示)。从对话框左侧的变量列表中选y,点击(钮使之进入Dependent框,选x1、x2,点击(钮使之进入Indepentdent(s)框;在Method处下拉菜单,共有5个选项:Enter(全部入选法)、Stepwise(逐步法)、Remove(强制剔除法)、Backward(向后法)、Forward(向前法)。本例选用Enter法。点击OK钮即完成分析。 ? ? 图8.2 线性回归分析对话框 ? 用户还可点击Statistics...钮选择是否作变量的描述性统计、回归方程应变量的可信区间估计等分析;点击Plots...钮选择是否作变量分布图(本例要求对标准化Y预测值作变量分布图);点击Save...钮选择对回归分析的有关结果是否作保存(本例要求对根据所确定的回归方程求得的未校正Y预测值和标准化Y预测值作保存);点击Options...钮选择变量入选与剔除的α、β值和缺失值的处理方法。 ? 结果解释 在结果输出窗口中将看到如下统计数据: ? * * * * M U L T I P L E R E G R E S S I O N * * * * ? Listwise Deletion of Missing Data Equation Number 1 Dependent Variable.. Y Block Number 1. Method: Enter X1 X2 ? Variable(s) Entered on Step Number 1.. X2 2.. X1 ? Multiple R .94964 R Square .90181 Adjusted R Square .87376 Standard Error .14335 Analysis of Variance DF Sum of Squares Mean Square Regression 2 1.32104 .66052 Residual 7 .14384 .02055 F = 32.14499 Signif F = .0003 ? ------------------ Variables in the Equation -----

您可能关注的文档

文档评论(0)

lanhe8975915 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档