- 1、本文档共11页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
2万数据查出重复的
海量数据处理2010-08-04 17:071. 给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。
2. 有10个文件,每个文件1G, 每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序
3. 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词
4.海量日志数据,提 取出某日访问百度次数最多的那个IP。
5.2.5亿个整数中找出不重复的整数,内存空间不足以容纳这2.5亿个整数。
6.海量数据分布在 100台电脑中,想个办法高效统计出这批数据的TOP10。
7.怎么在海量数据中找出重复次数最多的一个
8.上千万or亿数据 (有重复),统计其中出现次数最多的前N个数据。
统计可以用hash,二叉数,trie树。对统计结果用堆求出现的前n大数据。增加点限制可 以提高效率,比如 出现次数数据总数/N的一定是在前N个之内
9.1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字 符串。请问怎么设计和实现?
10.一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前十个词。请给出思想,给时间复杂度分析。
11.一个文本文件, 也是找出前十个最经常出现的词,但这次文件比较长,说是上亿行或者十亿行,总之无法一次读入内存,问最优解。
12.有10个文件, 每个文件1G, 每个文件的每一行都存放的是用户的query,每个文件的query都可能重复要按照query的频度排序
13.100w个数中 找最大的前100个数
14.寻找热门查询:
有哪些信誉好的足球投注网站引擎会通过日志文件把用户每次检索使用 的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,
这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,
也就是越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。
(1)请描述你解决这个问题的思路;
(2)请给出主要的处理流程,算法,以及算法的复杂度。
15.一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。
如何找到N^2个数的中数(median)?
大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯 这样的一些涉及到海量数据的公司经常会问到。
下面的方法是对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆 盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到 的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎讨论。
1.Bloom filter
适 用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集
基本原理及要点:
对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置 1,查找时如果发现所有hash函数对应位都是1说明存在,很明显 这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就 是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。
还有一个比较重要的问 题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。 在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m 应该=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。
举个例子我们假设错误 率为0.01,则此时m应大概是n的13倍。这样k大概是8个。
注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元 素的个数)。通常单个元素的长度都是有很多bit的。所以使用 bloom filter内存上通常都是节省的。
扩展:
Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与
您可能关注的文档
最近下载
- 07564唐宋词研究(广东)通关宝典.pdf
- 幼儿园书法练字启蒙第五讲、第六讲完整课件.pptx VIP
- 五年级数学集体备课(初稿) (1).doc
- 人教精通版2024三年级英语上册Unit 2 达标检测卷+答案.doc
- 重庆市第一中学校2024-2025学年九年级上学期期初检测数学试题(解析版).docx VIP
- 2022-2023学年合肥市庐阳区寿春中学九年级上学期期中数学试卷(含答案解析).docx
- 国家开放大学《西方行政学说》章节测试参考答案.pdf
- 保安人员基本信息登记表.docx
- ExponentialandLogarithmicFunctions.ppt
- 17松鼠(任务二) 大单元公开课课件 部编版五年级语文上册.ppt
文档评论(0)