网站大量收购闲置独家精品文档,联系QQ:2885784924

基于神经网络的乳腺癌自动分类.docVIP

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于神经网络的乳腺癌自动分类.doc

基于神经网络的乳腺癌自动分类   摘要:该文利用神经网络对乳腺癌进行自动分类。通过调节神经网络参数对样本进行训练,得到最佳训练网络,最终乳腺癌的正确识别率达到99.45%,分类准确率较高,适合于乳腺癌的辅助诊断。   关键词:乳腺癌;神经网络;自动分类   中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2013)33-7558-02   现代社会生活节奏的加快,女性患乳腺癌的几率也随之变大。乳腺癌已成为影响现代女性健康的一大杀手。根据中国抗癌协会公布的相关数据显示,近年来,我国乳腺癌的发病率正以每年3%的速度递增,发病人群呈现年轻化的趋势。乳腺癌已成为现代城市中死亡率增长最快的癌症 [1]。医生在采取治疗措施之前,必须能够快速的对乳腺癌的种类进行确定,这对治疗乳腺癌的有效治疗手段的选择至关重要。传统的有效分类方法是穿刺,但是此类方法往往耗时,通常需要3天左右,并且病人需要克服对穿刺的心理恐惧。因此应用机器进行快速学习分类的乳腺癌辅助诊断方法应运而生。   作为一种常用的机器自动分类方法基于人工神经网络模型的分类方法是基于仿生学理论来实现,在对人类大脑工作机制进行高度仿真的基础上,完成对网络的训练,使训练后的神经网络能够展现出人类大脑的功能,比如感知学习、逻辑推理等等。基于所采用的样本相似性,人工神经网络技术可以利用各种融合结构来完成网络权值的表述,具体步骤为:(1)、利用神经网络中的特定算法完成知识的获取,得到必须的不确定性推理机制;(2)、根据得到的推理机制完成融合过程,对网络权值进行修正,然后重新进行在学习,最后使输出的信号误差达到允许的范围之内。   在现有的多种神经网络模型中,该文采用基于误差反向传播理论的前馈网络算法(简称BP法)进行乳腺癌的自动分类。   1 BP神经网络系统的设计   1)样本的选取   本文采用由威斯康星大学医院威廉博士提供的699组乳腺癌数据,每组数据包括乳腺癌患者的9个特征参数,它们分别是:肿块密度、细胞的大小的一致性、细胞形状的一致性、边缘附着力、单上皮细胞大小、裸核、布兰德染色质、正常核仁、有丝分裂。这些患者中良性患者458人(65.5%),恶性患者241人 (34.5%)。随机选取500组作为网络训练样本,另外199组作为测试样本。   2)隐层数的设计   设计隐层数前,应对网络的训练样本及样本映射问题进行确认。根据乳腺癌数据,评价乳腺癌的特征参数有9个,故网络输入层点数为9。输出点数确定应以乳腺癌良性和恶性归类为依据。故可确定输出节点数为2。   在对多层前馈网络结构进行设计时,主要应考虑两大问题:一是,需要设计几个网络隐层;二是,针对所设置网络隐层,分别应设置几个隐节点,方可实现最佳。从理论角度进行分析,可以得知采用单隐层前馈神经网络能够映射所有连续函数,因此多采用单隐层前馈神经网络。而需要两个或两个以上的隐层的情况,一般是学习不连续函数[3]。在本项研究中,采用的是单隐层结构的神经网络。   3)隐节点数的设计   隐节点的设计主要用以提取和记忆学习样本数据的的内在规律。隐节点的数量一般是不确定的。每一个隐节点均有若干权值。而每一个权值均可以怎强网络映射能力。隐节点数确定对构造网络结构十分关键。隐节点数过多易出现出现过度吻合,减弱神经网络泛化能力,增加网络的训练时间等问题。例如网络对如噪音等非规律内容的记忆。隐节点过少易出现不能有效的概括和体现样本数据,获取信息能力相对较差。   在确定隐层节点个数时,主要应考虑三大决定因素,一是,样本噪声的大小;二是,提供给训练网络的样本数目;三是,样本数据中蕴含规律的复杂程度。在对最佳隐层节点个数进行确定时,我们较为常用的方法是试凑法。即,在样本集相同的前提下,由少到多的逐步增加,分别进行训练,以最终得出的训练结果来确定误差最小时的隐节点数。该文中我们采用了确定隐节点数的经验公式[m=n+l+a]进行估计,其中[m]表示隐层节点数,[n]表示输入层节点数,[l]为输出节点数。[α]为1~10之间的常数[3-4]。因此根据本文中输入节点数为9,输出节点数为2,我们选择隐层数分别为5、6、7、8、9、10、11、12、13的网络进行训练和测试。   2 神经网络设置   经过反复训练和测试,用于乳腺癌的自动分类的BP神经网络,选取的网络参数如表1所示。根据网络参数,该文采用的BP神经网络模型如图1所示。   表1 网络参数选取结果   [参数名称\参数值\参数名称\参数值\输入节点个数\9\最小均方误差\1e-2\输出节点个数\2\隐层节点个数\5-13\最小梯度\1e-20\隐层转移函数\Logsig\输出层转移函数\Purelin\最大训练步数\1000\]   3 仿真

文档评论(0)

jingpinwedang + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档