网站大量收购闲置独家精品文档,联系QQ:2885784924

市政排水工程造价估算研究.docVIP

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
市政排水工程造价估算研究.doc

市政排水工程造价估算研究   【摘要】随着我国城镇化建设的迅速发展,各城市基础设施规模也相应扩大,同时各级政府也在投入大量的资金进行市政工程建设。在工程建设中,工程造价是建设的核心,而工程造价估算又是工程造价的基础,是工程建设可行性的前提。因此,本文针对工程建设中的排水工程造价估算做出研究,以便为市政排水工程保质保量建设有所帮助。   【关键词】市政排水工程;造价估算   近几年,随着市政工程建设的发展,工程造价估算理论也相应取得了不少研究成果,如数理统计、模糊数学、自适应过滤技术、专家系统与人工神经元网络技术等新的估算方法。可以说,这些模型方法在其他学科都有着广泛的应用,尤其是模糊数学和神经网络的应用。如武汉水利电力大学的胡志根、天津城市建设学院的李涛、阜新矿业学院的邵良杉等都采用模糊数学方法对土建工程与井建工程造价估算做出了分析;西安建筑科技大学的周丽萍、长沙交通学院的唐先英等也将神经网络方法应用于工业与民用建筑工程、水利水电工程及其井巷工程的造价估算。但是通过模糊数学、神经网络、灰色理论等方法对排水工程造价估算的不多见,因此,本文分别通过用灰色理论、模糊数学、神经网络及灰色理论与RBF神经网络相结合的四种估算模型对排水管道工程进行造价估算。以便为排水工程造价估算有所帮助。   1. 利用灰色理论估算排水工程造价   (1)此方法需要选取排水工程的工程特征及其造价样本,然后针对这些实例样本(一部分是已建工程,一部分是待估工程)的工程参数与特征,赋予工程特征参数系数及其权重,然后计算出各自的排水工程参数系数与每个影响因素所对应的权重。   (2)根据灰色理论估算原理及其模型流程图,利用计算机程序在每次选好的几个典型工程中,将任意一个典型工程当作欲估工程,轮流计算各典型工程自身的单位估价,看是否满足精度要求。具体实例中,选取那些误差最小的样本工程作为典型工程来估算待估工程的造价。具体的计算步骤是:首先为了方便计算,对这几个典型的工程按照编号由大到小排列,然后对这些序列的参数系数进行初值化;然后计算各子序列与母序列在第k点的序列差;再次计算出两级最小差、两级最大差、关联度与关联系数;最后计算待估工程的造价(在计算出来的关联度中选取最大的三个关联度,按从大到小的顺序排列,进而找到对应的三个典型工程)。可见,通过利用灰色理论法可以估算出待估工程的造价,只要与其实际造价相对误差在正负10%以内,便符合精度要求。   2. 利用模糊数学估算排水工程造价   (1)此方法同样选取灰色理论中实例的几个样本作为典型工程来估算待估工程的造价。其中,灰色理论中的参数系数就是模糊数学中的“隶属度”,然后对待估工程逐个估算工程造价。   (2)具体过程:首先对贴近度计算,也就是计算待估工程与每个典型工程隶属度的交并集,在计算后选取贴近度较大的前三个典型工程计算;然后计算调整系数(包括对拟建工程的模糊关系系数与所选典型工程的模糊关系系数的计算);最后计算待估工程造价估算。通过利用模糊数学估算的待估工程造价与实际造价误差也是在正负10点以内即可。   3. 利用神经网络估算排水工程造价   (1)神经网络估算法主要是基于Matlab工具箱,利用Matlab神经网络工具箱函数,编制计算程序。径向基函数隐层是由两层神经元构成,第一层为径向层,神经元传递函数为radbas,加权函数为dist,输入函数为netprod;第二层神经元的传递函数为纯线性函数purelin,加权函数为dotprod,输入函数为netsum。在程序中,首先实例中样本数据进行归一化处理,归一化处理函数用prestd;创建 RBF神经网络模块,其格式为net=newrb(p,t,goal,sp,mn,df),其中p是典型工程的输入值,t是典型工程的目标值即每个工程对应的造价,goal是网络的均方误差性能指标,sp是扩展常数,mn是神经元个数最大值,df是训练过程的显示频率,利用这些参数使得神经网络进行学习训练;该函数利用迭代方法建立网络,开始时网络径向基层的神经元个数为零,然后每迭代一次,径向基层就添加一个神经元,在每次迭代中,训练好的网络首先进行仿真并找到对应于最大输出误差的输入样本值,然后径向基层添加一个神经元并把权值设为该输入值,最后再修改线性层的权值以达到最小误差。仿真通常用的函数为sim,其格式为t0=sim(net,p0) ,p0 为待估工程的输入值, t0为所求的输出值;利用归一化函数的反函数对神经网络的输出值 t0进行处理,即可得到预测的待估工程的造价。   (2)通过对程序运行,可以得到RBF神经网络训练误差变化曲线图,从图中找到神经网络训练次数,输出矢量与目标矢量之间的均方误差,最终满足了网络训练的目标值0.001。最终所得到的样本造价估

文档评论(0)

jingpinwedang + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档