- 1、本文档共6页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于BP神经网络的系统辨识
系统辨识与自适应
基于BP神经网络的系统辨识
电气与自动化工程学院,控制理论与控制工程3班,王晓,学号:140820082
摘要:BP神经网络是一种具有反向修正功能的神经系统,具有的非线性特性和学习能力且已被证明具有逼近任意有界函数的能力。它有能力辨识那些不能线性化的非线性系统,不需要预先知道被测系统的模型。BP神经网络结构具有较强的自适应能力,并行处理和高度鲁棒性,采用神经网络方法设计的控制系统将具有更强的实时性,更强的适应能力和更强的鲁棒性。
1引言
传统的系统辨识方法有着很多的不足,主要表现在:它要求研究人员给出系统模型的结构及阶次,即模型的建立要立足于函数的求解,这个过程是很难实现,因此确定模型参数的系统辨识理论的研究和应用都还局限于线性系统。人工神经网络是由大量而简单的神经元按某种方式连接形成的智能仿生动态网络,依靠计算机强大处理能力来实现对信息的处理。其具有的非线性特性和学习能力,为解决复杂的非线性、不确定系统的辨识问题,开辟了一条有效的途径。它不需要预先知道被测系统的模型就可以将系统模型辨识出来,这是神经网络辨识的优势所在。
2 BP神经网络
BP网络是一种利用误差反向传播训练算法的神经网络,简称BP(Back Propogation)网络,结构图如图1所示,是一种有隐含层的多层前馈网络,系统地解决了多层网络中隐含单元连接权的学习问题。 如果网络的输入节点数为M、输出节点数为L,则此神经网络可看成是从M维欧氏空间到L维欧氏空间的映射。这种映射是高度非线性的。
图1 BP神经网络结构图
2.1.BP算法原理
BP学习算法的基本原理是梯度最速下降法,它的中心思想是调整权值使网络总误差最小。也就是采用梯度有哪些信誉好的足球投注网站技术,以期使网络的实际输出值与期望输出值的误差均方值为最小。网络学习过程是一种误差边向后传播边修正权系数的过程。这种学习的过程就是训练的过程,是神经网络各神经元连接方式、权值和阈值的调整过程,更是辨识的过程。学习的方法是使所确定的误差函数达到最小值,从而得到隐含在被测系统的输入输出数据之间的关系。
BP网络的每一层连接权值都可通过学习来调节。多层网络运行BP学习算法时,实际上包含了正向和反向传播两个阶段。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层,每一层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使误差信号最小。
BP网络的前馈计算
隐含层的第i个神经元在样本p作用下的输入为:
隐含层的第i个神经元的输出为:
输出层第k个神经元的总输入为:
输出层的第k个神经元的实际输出为:
对于每一样本p的输入模式对的二次型误差函数为:
BP学习算法的基本原理是梯度最速下降法,它的中心思想是调整权值使网络总误差最小。 学习过程按使误差函数Jp减小最快的方向调整加权系数直到获得满意的加权系数为止。因此,权系数应按Jp函数梯度变化的反方向调整,使网络逐渐收敛。
输出层的神经元权系数修改公式:
隐含层的神经元权系数修改公式:
BP网络学习算法的计算步骤
初始化:置所有的加权系数为最小的随机数;
提供训练集:给出输入向量p和期望的输出向量t。
计算实际输出;
计算期望值与实际输出的误差;
调整输出层的加权系数;
调整隐含层的加权系数;
返回步骤(3),直到误差满足要求为止。
2.系统辨识
所谓辨识建模是从实验数据出发,根据辨识的目的以及对过程已有的验前知识,预先给出一个模型类(线性的、非线性的、定常的、时变的、连续的、离散的… )进行拟合。无论是基于算法的辨识还是基于神经网络的辨识方法,都应当考虑模型、输入信号、以及误差准则的选择这三个基本问题:
2.1模型的选择
模型是在某种意义下对于实际系统的一种近似描述,正确选择模型依赖于模型的用途和兼顾其精确性和复杂性问题。如果所建立的模型是用于系统分析的,则所需的模型必须把精确性放在首位,此时模型可能变得比较复杂。若建立的模型主要用于实时控制,可忽略次要因素,只考虑其主要因素,使模型简单些。在建立实际系统模型时,由于存在精确性和复杂性的矛盾,则要找到解决矛盾的折衷方法。反映在选择多层网络模型上,由于隐层及其节点数的确定目前还没有理论上的明确指导,折衷的方法即体现在通过多次仿真实验,找出能在给定准则下逼近原系统的最简单的多层网络模型。
2.2输入信号的选择
为了能够辨识实际系统,输入信号必须满足一定条件。第一,在辨识时间内,输入信号必须是持续激励的,即输入信号必须充分激励系统的所有模态,使系统所有的模态都在模型中得以体现。从频谱观点看,输入信号的频谱必须足以覆盖系统的频谱。第二,输入信号的最优设计问题,即设计输入信号使给定问题的辨识精度最高。反
您可能关注的文档
- 地质图的阅读和分析答案(星岗).doc
- 地铁工务工班长应知应会手册.doc
- 地质大学隧道标书模版.doc
- 地面下水道人行道路缘石及东干渠整平挖沟工程施工组织设计.doc
- 地高辛标记探针的Southern杂交技术.doc
- 场务连运输股及汽车连集体宿舍外墙保温工程施工合同6515.doc
- 地铁标准化施工全过程.docx
- 场效应管怎样测量好坏.doc
- 场地设计读书报告.docx
- 场平及道路硬化工程.docx
- 北师大版小学数学三年级上册《寄书》教学设计.docx
- 统编版(部编版)语文二年级上册《雪孩子》教学设计.docx
- 统编版(部编版)语文二年级上册《八角楼上》教学设计.docx
- 北师大版小学数学三年级上册《长方形周长》教学设计.docx
- 北师大版小学数学三年级上册《丰收了》教学设计.docx
- 统编版(部编版)语文二年级上册《夜宿山寺》教学设计.docx
- 统编版(部编版)语文二年级上册《风娃娃》教学设计.docx
- 统编版(部编版)语文二年级上册《朱德的扁担》教学设计.docx
- 统编版(部编版)语文二年级上册《难忘的泼水节》教学设计.docx
- 统编版(部编版)语文二年级上册《纸船和风筝》教学设计.docx
文档评论(0)