网站大量收购闲置独家精品文档,联系QQ:2885784924

毕业论文__基于模糊线性判别分析的人脸识别算法设计.docVIP

毕业论文__基于模糊线性判别分析的人脸识别算法设计.doc

  1. 1、本文档共57页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于模糊线性判别分析的人脸识别算法设计 学 院 专 业 班 级 学 号 姓 名 指导教师 负责教师 摘 要 人脸识别技术是生物识别技术的一种,以其直接性,唯一性,方便性等特点,在公安,海关,交通,金融,视频会议,机器人的智能化研究等方面得到了越来越广泛的应用。人脸识别技术是模式识别领域中的一个前沿课题。在过去的几十年里,研究者尝试利用计算机来模仿人类识别人脸的能力,并提出了很多人脸识别的有效算法,利用不同技术提高了人脸识别算法的平均识别率。本文着重讨论一种把特征脸和模糊线性判别分析(FLDA)算法结合起来进行人脸识别的方法。 该方法利用主成分分析(PCA)方法求得训练样本的特征空间,然后在此基础上计算FLDA算法的特征子空间,进一步对特征脸空间降维。经过FLDA降维后的子空间中,同一类别的样本尽可能靠近,不同类别的样本尽可能分散(即降维后同一个人的人脸图像尽可能的靠近,不同人的人脸图像尽可能的分散开)。模糊LDA方法引入了模糊技术来优化特征提取,利用隶属度信息来描述样本的分布信息,能得到一个更好的类中心位置估计。应用于Yale及ORL人脸库的实验结果表明,该算法具有较高的识别率。 关键词:人脸识别;主成分分析;模糊线性判别分析;特征脸 Face Recognition Algorithm based on Fuzzy linear discriminant analysis Abstract Face recognition technology is a kind of Biological recognition technology. With its immediacy, uniqueness and convenience, etc. It gets more and more widely used in terms of public security, customhouse, traffic, finance, video conference, the study on robot’s intelligence. Face recognition technology is a frontier topic in the field of pattern recognition. In the past few decades, the researchers tried to use a computer to imitate humans ability to recognize faces, and a lot of effective algorithm of face recognition was proposed, and they used different technology increased the average recognition rate of face recognition algorithm. This paper focuses on a face recognition method which combining with the principal component analysis and fuzzy linear discriminant analysis (FLDA) algorithm. This method obtains the characteristics space of the training sample with the principal component analysis(PCA) algorithm, then on the basis of this calculation, get another FLDA’S feature subspace which has lower dimensions. In this FLDA’s feature subspace, samples of the same category are as near as possible, different types of sample are as disperse as possible (In other words, after the dimension reduction, the same person face image are as near as possible, the different human face image are as far as possible). The fuzzy technolog

您可能关注的文档

文档评论(0)

六神无主 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档