自动控制系统的稳定性和稳态误差分析.doc

自动控制系统的稳定性和稳态误差分析.doc

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
自动控制系统的稳定性和稳态误差分析

实验三 自动控制系统的稳定性和稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 ,用MATLAB编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB命令窗口写入程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) 运行结果如下: Transfer function: 0.2 s + 0.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5 s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den) 运行结果如下: p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,v) pzmap(Gctf) grid 运行结果如下: z = -2.5000 p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i k = 0.2000 输出零极点分布图如图3-1所示。 图3-1 零极点分布图 (2)已知单位负反馈控制系统的开环传递函数为 ,当取=1,10,100用MATLAB编写程序来判断闭环系统的稳定性。 只要将(1)代码中的k值变为1,10,100,即可得到系统的闭环极点,从而判断系统的稳定性,并讨论系统增益k变化对系统稳定性的影响。 K=1时 K=10时 K=100时 2、稳态误差分析 (1)已知如图3-2所示的控制系统。其中,试计算当输入为单位阶跃信号、单位斜坡信号和单位加速度信号时的稳态误差。 图3-2 系统结构图 从Simulink图形库浏览器中拖曳Sum(求和模块)、Pole-Zero(零极点)模块、Scope(示波器)模块到仿真操作画面,连接成仿真框图如图3-3所示。图中,Pole-Zero(零极点)模块建立,信号源选择Step(阶跃信号)、Ramp(斜坡信号)和基本模块构成的加速度信号。为更好观察波形,将仿真器参数中的仿真时间和示波器的显示时间范围设置为300。 图3-3 系统稳态误差分析仿真框图 信号源选定Step(阶跃信号),连好模型进行仿真,仿真结束后,双击示波器,输出图形如图3-4所示。 图3-4 单位阶跃输入时的系统误差 信号源选定Ramp(斜坡信号),连好模型进行仿真,仿真结束后,双击示波器,输出图形如图3-5所示。 图3-5 斜坡输入时的系统误差 信号源选定加速度信号,连好模型进行仿真,仿真结束后,双击示波器,输出图形如图3-6所示。 图3-6 加速度输入时的系统误差 从图3-4、3-5、3-6可以看出不同输入作用下的系统的稳态误差,系统是II型系统,因此在阶跃输入和斜坡输入下,系统稳态误差为零,在加速度信号输入下,存在稳态误差。 (2)若将系统变为I型系统,,在阶跃输入、斜坡输入和加速度信号输入作用下,通过仿真来分析系统的稳态误差。 三、实验要求 讨论下列问题: 讨论系统增益k变化对系统稳定性的影响; 增益K可以在临界K的附近改变系统的稳定性 讨论系统型数以及系统输入对系统稳态误差的影响。 增大系统开环增益K,可以减少0型系统在阶跃输入时的位置误差,可以减少i系统在斜坡输入时的速度误差,可以减少ii型系统在加速度输入时的加速度误差。

文档评论(0)

kaiss + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档