- 1、本文档共16页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
ResearchMethod-ch16.ppt
第16章 典型相關分析 ?本章的學習主題 ? 1. 典型相關的概念 2. 典型相關分析之基本假設及模型適合度 3. 典型權重和典型變量 4. 典型相關係數 5. 典型負荷量 6. 重疊指數 7. 典型相關分析整體模式之解釋 16.1 典型相關分析之基本概念 典型相關 (canonical correlation) 分析是探討多個準則變數 ( Y1、Y2、...、Yn ) 和多個預測變數 ( X1、X2、...、Xm ) 線性組合的相關分析方法。同時典型相關的準則變數和預測變數通常都是計量的資料。而典型相關的一般分析模式如下: Y1 + Y2 +...+ Yn = X1 + X2 +...+ Xm 16.1 典型相關分析之基本概念 具體而言,典型相關分析的目的在於: 1. 探討兩組變數(準則變數及預測變數)之間的關 係程度。 2. 針對準則變數和預測變數找出數組權重,使準 則變數和預測變數間之各組線性組合的相關性 為最大。而各組線性組合間是相互獨立的。 3. 分析準則變數各組和預測變數各組線性組合間 之關係,並解釋典型函數中各準則變數對於預 測變數的影響。 16.2 典型相關分析的基本假設及模型適合度 典型相關分析具有以下之基本假設: 1. 兩組變數間的相關係數是基於線性關係,若為非線性則資料必須要被轉換成為線性,才能進行典型相關分析。 2. 典型變量間的典型相關為一線性關係,若為非線性則不會被接受。 3. 典型相關不要求變數服從常態分配,只要該變數能不減少和其他變數相關程度。 16.3 典型相關分析之模型 圖16-1為只產生一組典型變量(因為通常可能不只產生一組典型變量)時描繪成的結構示意圖: 1. S11,S12,…,S1m及S21,S22,…,S2n:此為各變數對各 構面之典型負荷量(canonical loadings)。 2. R1:典型相關係數,X方面線性組合與Y方面線性組合之 間之相關係數。 3. RIdu/v及RIdv/u:重疊指數,典型相關分析中各組線性 組合構面被解釋的變異。 16.3 典型相關分析之模型 16.4 典型相關係數 典型相關係數(canonical correlation)就是預測變數X 的線性函數組合和準則變數Y的線性函數組合間所能獲 得的最大相關係數。 16.5 典型負荷量 典型負荷量(canonical loadings)是指預測和準則兩組原始變數對各自之典型線性組合間的相關程度。而此中相關稱為典型結構(canonical structure)。通常典型負荷量在0.3以上即代表此一變數對於各自之線性組合具有顯著之解釋能力。 若將每個變數的典型負荷量予以平方,就可獲得每一個原始變數的變異量被其典型變量解釋的程度。各變數的典型負荷量平方值的簡單平均數就是典型變量所解釋之共有變異量之比例,即所謂自我解釋的能力。 16.6 重疊指數 重疊指數(index of redundancy),如同複迴歸中的判定係數 ( R2 ),是衡量典型相關中被解釋的變異量;它計算預測變數 (或準則變數)之變異數可被準則變數(或預測變數)之變異所解 釋的程度。重疊指數是由以下兩個數字相乘而得:(1)準則 (或預測)變數典型變量之解釋百分比(即自我相關係數);(2) 典型相關係數的平方(CANR2)。 16.7 典型相關函數 所謂典型相關函數(canonical function)是指兩組典型變量所構成的線性關係。 在解釋典型相關函數時,有三種方法可供使用: 1.典型權重 2.典型負荷量 3.典型交叉負荷量 16.8 典型相關分析的結果呈現 * 企業研究方法第16章 * 企業研究方法第16章 X 組之線性 組合構面 Y 組之線性 組合構面 RIdu/v RIdv/u R12 X1 X2 Xm X3 …. Y1 Y2 Ym Y3 …. S11 S12 S13 S1m S21 S22 S23 S2n 圖 16-1 典型相關示意圖 例如我們想探討知識基礎能力(包括科技能力、結構能力、文化能力)與知識處理能力(包括獲取能力、轉換能力、應用能力及保護能力)之典型相關。 首先,在找出第一對X與Y之相關程度最大的線性組合之後,通常還可再找出與第一對線性組合不相關而X與Y之相關程度次大的第二對線性組合。一般而言,在有m1個預測變數和m2個準則變數的情況下,如m1大於m2,則可獲得m2對的線性組合;如m1小於m2,則可獲得m1對的線性組合。 第一對線性組合的典型相關最大,第二對次之,以後則依次愈來愈小。 1
文档评论(0)