- 1、本文档共9页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
纳米微粒的基本理论
1.电子能级的不连续性
久保(kubo)理论
电子能级的统计学和热力学
? 2.量子尺寸效应
? 3.小尺寸效应
? 4.表面效应
? 5.宏观量子隧道效应
? 6.库仑堵塞与量子隧穿
? 7.介电限域效应
量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象均称为量子尺寸效应。
小尺寸效应:当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应。
例如,光吸收显著增加并产生吸收峰的等离子共振频移;磁有序态向磁无序态、超导相向正常相的转变,声子谱发生改变。
实例:
1. 人们曾用高倍率电子显微镜对超细金颗粒(2nm)的结构非稳定性进行观察,实时地记录颗粒形态在观察中的变化,发现颗粒形态可以在单晶与多晶、孪晶之间进行连续地转变。这与通常的熔化相变不同,并提出了准熔化相的概念。
2. 纳米尺度的强磁性颗粒(Fe-Co合金,氧化铁等),当颗粒尺寸为单磁畴临界尺寸时,具有甚高的矫顽力,可制成磁性信用卡、磁性钥匙、磁性车票等,还可以制成磁性液体,广泛地用于电声器件、阻尼器件、旋转密封、润滑、选矿等领域。
3. 纳米微粒的熔点可远低于块状金属。例如2nm的金颗粒熔点为600K,随粒径增加,熔点迅速上升,块状金为1337K;纳米银粉熔点可降低到373K、此特性为粉末冶金工业提供了新工艺。
4. 利用等离子共振频率随颗粒尺寸变化的性质,可以改变颗粒尺寸,控制吸收边的位移,制造具有一定频宽的微波吸收纳米材料,可用于电磁波屏蔽、隐形飞机等。
表面效应:纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加,这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性,例如金属的纳米粒子在空气中会燃烧,无机的纳米粒子暴露在空气中会吸附气体,并与气体进行反应。这种表面原子的活性不但引起纳米粒子表面原子输运和构型变化,同时也引起表面电子自旋构象和电子能谱的变化。
宏观量子隧道效应:微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦具有隧道效应,称为宏观的量子隧道效应。宏观量子隧道效应的研究对基础研究及实用都有着重要意义。它限定于磁带、磁盘进行信息贮存的时间极限。量子尺寸效应、隧道效应将会是未来微电子器件的基础,或者它确立了现存微电子器件进一步微型化的极限。当微电子器件进一步细微化时,必须要考虑上述的量子效应。
库仑堵塞与量子隧穿:库仑堵塞效应是20世纪80年代介观领域所发现的极其重要的物理现象之一。当体系的尺度进入到纳米级(一般金属粒子为几个纳米,半导体粒子为几十纳米),体系是电荷“量子化”的,即充电和放电过程是不连续的,充入一个电子所需的能量Ec为e2/2C,e为一个电子的电荷,C为小体系的电容,体系越小,C越小,能量Ec越大。我们把这个能量称为库仑堵塞能。换句话说,库仑堵塞能是前一个电子对后一个电子的库仑排斥能,这就导致了对一个小体系的充放电过程,电子不能集体传输,而是一个一个单电子的传输。通常把小体系这种单电子输运行为称库仑堵塞效应。
如果两个量子点通过一个“结”连接起来,一个量子点上的单个电子穿过能垒到另一个量子点上的行为称作量子隧穿。
介电限域效应:介电限域是纳米颗粒分散在异质介质中由于界面引起的体系介电增强的现象,这种介电增强通常成为介电限域,主要来源于微粒表面和内部局域强的增强。当介质的折射率比微粒的折射率相差很大时,产生了折射率边界,这就导致微粒表面和内部的场强比入射场强明显增加,这种局域强的增强成为介电限域。一般来说,过渡族金属氧化物和半导体微粒都可能产生介电限域效应。纳米微粒的介电限域对光吸收、光化学、光学非线性等会有重要的影响。因此,我们在分析这一材料光学现象的时候,既要考虑量子尺寸效应,又要考虑介电限域效应。
纳米微粒热学性质:通常纳米晶粒的起始长大
您可能关注的文档
- 美德就在我身边.ppt
- 美工-01 皮筋木工-美丽心琴.ppt
- 美国防腐工程师协会涂装检查人员认证的CIP.doc
- 美国好莱坞的“黄金时代”.ppt
- 美国加州十大人气景点,此生一定要去一次!.doc
- 美丽的澳洲大陆和新西兰.pptx
- 美丽的盘子——装饰画.pptx
- 美术二年级上湘教版18请你告诉我课件.ppt
- 美术中的比例课件.ppt
- 美洲概述 朱福云.ppt
- 谈如何在幼儿园开展绘本活动.doc
- 大学生家教创业项目计划书.pptx
- 2025年辽宁省新高考综合改革适应性演练数学模拟试卷带解析附答案(黄金题型).docx
- 2025年辽宁省新高考综合改革适应性演练数学模拟试卷带解析附完整答案【有一套】.docx
- 谈如何做到英语课堂具有趣味.doc
- 国外冬季施工方案.pptx
- 2025年辽宁省新高考综合改革适应性演练数学模拟试卷带解析附参考答案(研优卷).docx
- 2025年辽宁省新高考综合改革适应性演练数学模拟试卷带解析附参考答案【精练】.docx
- 2025年辽宁省新高考综合改革适应性演练数学模拟试卷带解析附参考答案【a卷】.docx
- 2025至2031年中国汽车机油压力传感器行业投资前景及策略咨询研究报告.docx
文档评论(0)