网站大量收购闲置独家精品文档,联系QQ:2885784924

03ImprovingSearch.ppt

  1. 1、本文档共60页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
03ImprovingSearch

TP SHUAI * * * * * * * 3.3 Algebraic conditions for improving and feasible directions Gradients Gradients show graphically as vectors perpendicular to contours of the objective function and point in the direction of most rapid objective value increase. Gradient conditions for improving directions Suppose that our search of objective function f has arrived at current solution x. Then the change associated with a step of size ? in direction ?x can be approximated as Theorem: Direction ?x is improving for maximize objective function f at point at x if ?f(x)??x0. On the other hand, if ?f(x)??x0, ?x does not improve at x Case where dot product ?f(x)??x=0 cannot be resolved without further information! Theorem: Direction ?x is improving for minimize objective function f at point at x if ?f(x)??x0. On the other hand, if ?f(x)??x0, ?x does not improve at x Note that We then need only choose ?x=??f(x) Theorem: When objective function gradient ?f(x)?0 Direction ?x= ?f(x) ( ?x=??f(x)) is an improving direction for a maximize (minimize)objective f. Active constraints and feasible direction Turning now to conditions for feasibility of directions, we focus our attention on constraints. Constraints define the boundary of the feasible region for an optimization model, so they will be the source of conditions for feasible directions. Not all the constraints of a model are relevant to whether a direction ?x is feasible at a particular solution x. For example, in Two Crude model, at point x=(4,4), any direction is feasible, but for point x=(7,0), any feasible direction ?x=(x,y) must satisfy y?0 because constraint x2?0 limits the feasibility of directions. Whether a direction is feasible at a solution x depends on whether it would lead to immediate violation of any active constraint(or tight constraints/ binding constrains) at x, i.e., any constraint satisfied as equality at x. Equality constraints are always active at every feasible point. Conditions for feasible dire

文档评论(0)

kabudou + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档