- 1、本文档共121页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
06-Microarray_data_analysis(生物信息学国外教程2010版)
Data matrix (20 genes and 3 time points from Chu et al., 1998) Software: S-PLUS package Fig. 7.8 Page 205 genes samples (time points) 3D plot (using S-PLUS software) t=0 t=0.5 t=2.0 Fig. 7.8 Page 205 Descriptive statistics: clustering Clustering algorithms offer useful visual descriptions of microarray data. Genes may be clustered, or samples, or both. We will next describe hierarchical clustering. This may be agglomerative (building up the branches of a tree, beginning with the two most closely related objects) or divisive (building the tree by finding the most dissimilar objects first). In each case, we end up with a tree having branches and nodes. Page 204 Agglomerative clustering a b c d e a,b 4 3 2 1 0 Fig. 7.9 Page 206 Adapted from Kaufman and Rousseeuw (1990) a b c d e a,b d,e 4 3 2 1 0 Agglomerative clustering Fig. 7.9 Page 206 a b c d e a,b d,e c,d,e 4 3 2 1 0 Agglomerative clustering Fig. 7.9 Page 206 a b c d e a,b d,e c,d,e a,b,c,d,e 4 3 2 1 0 Agglomerative clustering …tree is constructed Fig. 7.9 Page 206 Divisive clustering a,b,c,d,e 4 3 2 1 0 Fig. 7.9 Page 206 Divisive clustering c,d,e a,b,c,d,e 4 3 2 1 0 Fig. 7.9 Page 206 Divisive clustering d,e c,d,e a,b,c,d,e 4 3 2 1 0 Fig. 7.9 Page 206 Divisive clustering a,b d,e c,d,e a,b,c,d,e 4 3 2 1 0 Fig. 7.9 Page 206 Divisive clustering a b c d e a,b d,e c,d,e a,b,c,d,e 4 3 2 1 0 …tree is constructed Fig. 7.9 Page 206 divisive agglomerative a b c d e a,b d,e c,d,e a,b,c,d,e 4 3 2 1 0 4 3 2 1 0 Fig. 7.9 Page 206 Adapted from Kaufman and Rousseeuw (1990) Fig. 7.8 Page 205 Fig. 7.10 Page 207 1 1 12 12 Agglomerative and divisive clustering sometimes give conflicting results, as shown here Fig. 7.10 Page 207 Cluster and TreeView Fig. 7.11 Page 208 Cluster and TreeView clustering PCA SOM K means Fig. 7.11 Page 208 Cluster and TreeView Fig. 7.12 Page 208 Two-way clustering of genes (y-axis) and cell lines (x-axis) (Alizadeh et al., 2000) Fig. 7.13 Page 209 An exploratory technique used to reduce the dimensio
文档评论(0)