- 1、本文档共48页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于傅里叶剪切波变换的图像去卷积算法
基于傅里叶-剪切波变换的图像去卷积算法
研究与仿真
摘要:受成像条件、外部噪声以及人为因素的影响,人们获取到的图像常常会出现不同程度的失真,如图像含有噪声、模糊不清。噪声和模糊的存在降低了图像的视觉质量,影响了图像的后续处理。为改善图像质量,尽可能减少失真对图像后续处理的影响,对图像进行去噪和去模糊处理就成为图像预处理过程中一项非常重要的工作。小波变换因其多分辨特性而被广泛应用于图像去噪和去模糊。然而,小波变换只能表示图像中的点状奇异,而不能有效地表示曲线奇异。新近出现的剪切波变换则有效地克服了小波变换的缺陷。
在本文中,我们使用了一种基于剪切波变换的图像去卷积方法。模糊图像首先被投射到傅里叶域,进行正则化反演去模糊。之后剪切波再将图像分解到各个尺度和方向上,剪切波域的阈值将有色噪声收缩。为了提高估计质量,我们引入一种新型剪切波变换-离散不可分离剪切波变换,相对之前的剪切波变换,其方向指向性更好。但是Tikhonov正则限制了算法的提升空间,因此本文提出了一种将较为先进的正则化方法LPA-ICI与DNST结合的算法。大量的实验数据说明本文的去卷积算法在图像去模糊方面的潜力。
关键词:去卷积;去噪;剪切波变换;Tikhonov正则化;
Abstract:Images are often corrupted by noise and blur due to the undesired conditions for image acquisition, processing and transmission. The noise and blur in images have severely degraded image quality and affected the subsequent image processing tasks. Thus noise and blur reduction has been a very important pre-processing step for improving the quality of images. In the past decade, the wavelet transform has been successfully used in image denoising and deblurring due to its multiresolution capability. However, despite its remarkable success in dealing with pointwise singularities, the standard separable wavelet transform fails to provide an optimal sparse representation for images that contain other types of singularities. Shearlets, a new directional multiresolution transform, can efficiently represent the directional information of images.
In this paper, we consider a approach to image deconvolution based on shearlet transform. The deblurring is accomplished when the blurred image is first projected onto a Fourier domain, following Tikhonov regularized inversion, the colored noise is then suppressed using a shearlet domain based thresholding. To improve the estimating capability, we introduce a new shearlet transform associated with a nonseparable shearlet generator, which improves the directional selectivity of previous shearlet transforms. However,the above method cannot improve much due to the limitation of Tikhonov regulariza
文档评论(0)