- 1、本文档共9页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
感知器神经网:
clear all
close all
P=[0 0 1 1;0 1 0 1]
T=[0 1 1 1]
net=newp(minmax(P),1,hardlim,learnp)
net=train(net,P,T)
Y=sim(net,P)
plotpv(P,T)
plotpc(net.iw{1,1},net.b{1})性神经网络clear all
close all
P=[1.0 2.1 3 4]
T=[2.0 4.01 5.9 8.0]
lr=maxlinlr(P)
net=newlin(minmax(P),1,0,lr)
net.trainParam.epochs=300
net.trainParam.goal=0.05
net=train(net,P,T)
Y=sim(net,P)
clear all
close all
P=[1.1 2.2 3]
T=[2.1 4.3 5.9]
net=newlind(P,T)
Y=sim(net,P)
x=-4:.1:4
y=tansig(x)
plot(x,y,^-r)Sigmoid
As a reminder:?σ(x)=1/1+exp(?x)
Its derivative:?ddxσ(x)=(1?σ(x))?σ(x)
The problem here is?exp, which quickly goes to infinity, even though the result ofσ?is restricted to the interval?[0,?1]. The solution: The sigmoid can be expressed in terms of?tanh:?σ(x)=1/2(1+tanh(x/2)).
Softmax
Softmax, which is defined as?softmaxi(a)=exp(ai)/∑jexp(aj)?(where?a?is a vector), is a little more complicated. The key here is to expresssoftmax?in terms of the?logsumexp?function:?logsumexp(a)?=?log(∑?iexpai), for which good, non-overflowing implementations are usually available.
Then, we have?softmax(a)?=?exp(a???logsumexp(a)).
As a bonus: The vector of partial derivatives / the gradient of?softmax?is analogous to the sigmoid, i.e??/?aisoftmax(a)=(1?softmaxi(a))?softmaxi(a).
文档评论(0)