视频监控与视频分析-第十一章-随机森林与ADABOOST.ppt

视频监控与视频分析-第十一章-随机森林与ADABOOST.ppt

  1. 1、本文档共152页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Scaling Integral image enables us to evaluate all rectangle sizes in constant time. Therefore, no image scaling is necessary. Scale the rectangular features instead! 1 2 3 4 5 6 Boosting Boosting is a classification scheme that works by combining weak learners into a more accurate ensemble classifier A weak learner need only do better than chance Training consists of multiple boosting rounds During each boosting round, we select a weak learner that does well on examples that were hard for the previous weak learners “Hardness” is captured by weights attached to training examples Y. Freund and R. Schapire, A short introduction to boosting, Journal of Japanese Society for Artificial Intelligence, 14(5):771-780, September, 1999. The AdaBoost Algorithm Given: Initialization: For : Find classifier which minimizes error wrt Dt ,i.e., Weight classifier: Update distribution: The AdaBoost Algorithm Given: Initialization: For : Find classifier which minimizes error wrt Dt ,i.e., Weight classifier: Update distribution: Output final classifier: Weak Learners for Face Detection Given: Initialization: For : Find classifier which minimizes error wrt Dt ,i.e., Weight classifier: Update distribution: Output final classifier: What base learner is proper for face detection? Weak Learners for Face Detection window value of rectangle feature parity threshold Boosting Training set contains face and nonface examples Initially, with equal weight For each round of boosting: Evaluate each rectangle filter on each example Select best threshold for each filter Select best filter/threshold combination Reweight examples Computational complexity of learning: O(MNK) M rounds, N examples, K features Features Selected by Boosting First two features selected by boosting: This feature combination can yield 100% detection rate and 50% false positive rate ROC Cur

文档评论(0)

yanpan1 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档