- 1、本文档共152页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Scaling Integral image enables us to evaluate all rectangle sizes in constant time. Therefore, no image scaling is necessary. Scale the rectangular features instead! 1 2 3 4 5 6 Boosting Boosting is a classification scheme that works by combining weak learners into a more accurate ensemble classifier A weak learner need only do better than chance Training consists of multiple boosting rounds During each boosting round, we select a weak learner that does well on examples that were hard for the previous weak learners “Hardness” is captured by weights attached to training examples Y. Freund and R. Schapire, A short introduction to boosting, Journal of Japanese Society for Artificial Intelligence, 14(5):771-780, September, 1999. The AdaBoost Algorithm Given: Initialization: For : Find classifier which minimizes error wrt Dt ,i.e., Weight classifier: Update distribution: The AdaBoost Algorithm Given: Initialization: For : Find classifier which minimizes error wrt Dt ,i.e., Weight classifier: Update distribution: Output final classifier: Weak Learners for Face Detection Given: Initialization: For : Find classifier which minimizes error wrt Dt ,i.e., Weight classifier: Update distribution: Output final classifier: What base learner is proper for face detection? Weak Learners for Face Detection window value of rectangle feature parity threshold Boosting Training set contains face and nonface examples Initially, with equal weight For each round of boosting: Evaluate each rectangle filter on each example Select best threshold for each filter Select best filter/threshold combination Reweight examples Computational complexity of learning: O(MNK) M rounds, N examples, K features Features Selected by Boosting First two features selected by boosting: This feature combination can yield 100% detection rate and 50% false positive rate ROC Cur
您可能关注的文档
最近下载
- 园林机械使用规范.pptx
- 2024年(粮油)仓储管理员理论知识竞赛理论考试题库资料500题(含答案).pdf
- Sakura樱花Sakura樱花88E51702 说明书说明书用户手册.pdf
- 2024年新改版人教版七年级上册生物全册精编复习专用资料.doc
- 2024中煤电力限公司面向中煤集团内部招聘15人公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版.docx
- Unit 5 Into the wild Understanding ideas 课件 高中英语外研版(2019)必修第一册.pptx VIP
- Unit 5 Into the wild Understanding ideas示范公开课教学课件【外研版必修1】.pptx
- 2024四方人员云网安全运行应知应会考试.doc
- 人教版2023-2024学年六年级上册数学 第四单元 比(学生版)-(复习讲义)单元速记·巧练.docx VIP
- 技能鉴定题库(1349道).docx
文档评论(0)