- 1、本文档共77页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第五章 功能高分子材料 高分子材料科学的历史回顾 高分子的概念始于20世纪20年代,但应用更早。 1839年,美国人Goodyear发明硫化橡胶。 1855年,英国人Parks用硝化纤维素与樟脑混合制得赛璐珞。 1889年,法国人De Chardonnet(夏尔多内)发明人造丝。 1907年,酚醛树脂诞生。 1920年,德国人Staudinger发表了“论聚合”的论文,提出了高分子的概念,并预测了聚氯乙烯和聚甲基丙烯酸甲酯等聚合物的结构。 1935年,Carothes发明尼龙66,1938年工业化。 30年代,一系列烯烃类加聚物被合成出来并工业化,PVC(1927~1937),PVAc(1936),PMMA(1927~1931),PS(1934~1937),LDPE(1939)。自由基聚合发展。 高分子溶液理论在30年代建立,并成功测定了聚合物的分子量。Flory为此获得诺贝尔奖。 40年代,二次大战促进了高分子材料的发展,一大批重要的橡胶和塑料被合成出来。丁苯橡胶(1937),丁腈橡胶(1937),丁基橡胶(1940),有机氟材料(1943),ABS(1947),涤纶树脂(1940~1950)。 50年代,Ziegler和Natta发明配位聚合催化剂,制得高密度PE和有规PP,低级烯烃得到利用。 1956年,美国人Szwarc发明活性阴离子聚合,开创了高分子结构设计的先河。 50年后期至60年代,大量高分子工程材料问世。聚甲醛(1956),聚碳酸酯(1957),聚砜(1965),聚苯醚(1964),聚酰亚胺(1962)。 60年代以后,特种高分子和功能高分子得到发展。 特种高分子:高强度、耐高温、耐辐射、高频绝缘、半导体等。 功能高分子:分离材料(离子交换树脂、分离膜 等)、导电高分子、感光高分子、高分子催化剂、高吸水性树脂、医用高分子、药用高分子、高分子液晶等。 80年代以后,新的聚合方法和新结构的聚合物不断出现和发展。 新的聚合方法:阳离子活性聚合、基团转移聚合、活性自由基聚合、等离子聚合等等; 新结构的聚合物:新型嵌段共聚物、新型接枝共聚物、星状聚合物、树枝状聚合物、超支化聚合物、含C60聚合物等等。 偏光显微镜下的高分子液晶 电致发光高分子 反应型高分子材料 反应型高分子是在有机合成和生物化学领域的 重要成果,已经开发出众多新型高分子试剂和高分 子催化剂应用到科研和生产过程中,在提高合成反 应的选择性、简化工艺过程以及化工过程的绿色化 方面做出了贡献。更重要的是由此发展而来的固相 合成方法和固定化酶技术开创了有机合成机械化、 自动化、有机反应定向化的新时代,在分子生物学 研究方面起到了关键性作用。 电活性高分子材料 电活性高分子材料的发展导致了导电聚合物, 聚合物电解质,聚合物电极的出现。此外超导、电 致发光、电致变色聚合物也是近年来的重要研究成 果,其中以电致发光材料制作的彩色显示器已经被 日本和美国公司研制成功,有望成为新一代显示器 件。此外众多化学传感器和分子电子器件的发明也 得益于电活性聚合物和修饰电极技术的发展。 高分子分离膜材料 高分子分离膜材料与分离技术的发展在复杂体 系的分离技术方面独辟蹊径,开辟了气体分离、苦 咸水脱盐、液体消毒等快速、简便、低耗的新型分 离替代技术,也为电化学工业和医药工业提供了新 型选择性透过和缓释材料。目前高分子分离膜在海 水淡化方面已经成为主角,已经拥有制备18万吨/日 纯水设备的能力。 医药用功能高分子材料 医药用功能高分子是目前发展非常迅速的一个 领域,高分子药物、高分子人工组织器官在定向给药、器官替代、整形外科和拓展治疗范围方面做出了相当大的贡献。 光敏高分子化学,在光聚合、光交联、光降解、荧光以及光导机理的研究方面都取得了重大突破,特别在过去20多年中有了飞快发展,并在工业上得到广泛应用。比如光敏涂料、光致抗蚀剂、光稳定剂、光可降解材料、光刻胶、感光性树脂、以及光致发光和光致变色高分子材料都已经工业化。 近年来高分子非线性光学材料也取得了突破性进展。 功能性小分子的高分子化 (1)功能性小分子单体直接发生聚合反应 (2)功能性小分子通过聚合包埋与高分子材料结合 优点 生成的功能高分子功能基分布均匀 聚合物结构可以通过聚合机理预先设计 产物的稳定性较好 缺点 在功能性小分子中需要引入可聚合基团,而这种引入常常需要复杂的合成反应 要求在反应中不破坏原有结构和功能 当需要引入的功能基稳定性不好时需要加以保护 有时引入功能基后对单体聚合的活性会有影响 (1)功能性小分子单体直接发生聚合反应 通过在功能性小分子中引入可聚合基团得到单体,然后进行均聚
文档评论(0)