关于计算机专业学生模型抽象能力培养的探讨.docVIP

关于计算机专业学生模型抽象能力培养的探讨.doc

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
关于计算机专业学生模型抽象能力培养的探讨摘要:对于计算机专业学生来说,模型抽象能力至关重要。如何将现实中的需求问题抽象为合适的模型,并用形式化、数学或是计算机的语言去表达,是计算机工作者在科学研究以及工程实践中的基本素质。然而,在大学相关课程中,这方面能力的培养还得不到足够的重视。本文探讨了如何在计算机专业课程中融入对学生模型抽象能力的培养,并以图论课程为例进行了具体分析。关键词:模型抽象能力;图论;计算机专业课程中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2016)10-0200-02一、引言计算机学科是通过在计算机上建立模型并模拟物理过程来进行科学调查和研究的学科。这类课程是计算机专业学生必修的基础理论、基本知识和基本技能训练的课程[1]。在计算机教学实践中,抽象能力的培养在计算机软件人才和硬件人才的培养中尤为重要,是计算机系统级人才培养重要的能力要求之一。计算机应用人才如何发现应用问题、软件设计人才如何进行概念层与实现层的抽象、计算机系统人才如何进行综合设计,这些问题的解决与计算机人才的数据抽象能力密切相关[2]。文献[2]探讨了数据抽象能力在数据结构课程教学中的作用,分析了计算机应用型人才对能力培养的需求,特别是对数据抽象能力的要求。文献[3]分析了计算思维培养与离散数学教学之间的内在关系,在此基础上分别从课程引入和课程教学两个阶段探讨如何将离散数学教学与计算思维培养有机地结合起来。现在的计算机专业课程大都侧重基本知识点的讲授,缺乏对学生综合能力的培养,尤其是模型抽象能力的培养。模型抽象能力是计算机工作者的基本素质。在工程实践中,需要将现实的需求问题抽象为各种模型和流程图;在科学研究中,需要将领域问题抽象为合适的形式化模型和语言。然而,这方面的培养在目前的教学课程设计中得不到足够的重视。针对计算机专业学生模型抽象能力的培养,本文以图论课程为例进行了探讨,提出了问题需求-问题分析-事物抽象-问题模型的学习思路。二、模型抽象能力培养过程人类思维的发展历程说明,有创造的出现就有逻辑抽象的出现。随着实践的发展,人类根据自己的感受和亲身体验,逐步有了经验思维、公理思维、形式思维,并摆脱了经验的直观性而运用符号进行高度的抽象,逻辑抽象思维便产生了[4]。对于计算机专业的学生来说,要不断培养逻辑抽象能力,尤其是模型抽象能力。模型抽象能力是指将问题域中的需求问题抽象为计算机科学领域中的模型,比如,形式化模型(自动机,图,Petri网等)和非形式化模型(UML图,流程图等)。一般情况下,中国学生的知识基础是非常牢固的,但模型抽象的能力比较欠缺,其原因就是在教学实践中不重视对模型抽象的学习。在大学阶段,学生的知识有所积累,逻辑抽象思维有所发展,但要灵活地运用模型抽象能力还是非常困难的。本文针对学生模型抽象能力的培养,提出了问题需求-问题分析-事物抽象-问题模型的学习思路。首先,面对问题需求,进行观察和分析,清楚了解问题和需求。之后,对问题需求进行初步的分析和抽象,掌握问题的本质。然后,将非本质的、次要的方面舍去,留下能反应问题本质的事物,并将其抽象为模型。最后,综合问题本身,构建合适的计算机模型并进行判断。三、案例研究在课程学习的过程中,学生们更多的是对课本的结论、公式、定理的掌握,而不太注意去理解和把握科学家们发现这些结论、公式、定理的过程、形式和方法[4]。因此,要培养学生的模型抽象能力,就要从分析问题需求开始,遵循科学家的原创思路,理解问题的本质,比如图论的创始者欧拉如何在解决哥尼斯堡七桥问题的过程中创立了图论[5]。在普雷格尔(Pregel)河畔,有一座城市很有特点,就是哥尼斯堡(Konigsberg,现加里宁格勒)。这座城市被普雷格尔河分为两部分,河中又有两座小岛,整个城市的各部分由7座桥接通,如图2所示。当地人热衷于一个游戏,是否可以从某一地点出发,经过每座桥一次且仅一次后又返回原出发地。1736年欧拉用图论方法解决了此问题,写了第一篇图论的论文,从而成为图论的创始人。在实际教学过程中,很多教师只是顺便提一下哥尼斯堡七桥问题,然后就开始讲授欧拉图,忽略了欧拉是如何对该问题进行分析并抽象为数学问题的。欧拉在分析这个问题的时候,将七桥问题和一笔画问题联系起来,这样就该问题就转化为了一笔画问题的判定。在对问题需求进行分析之后,还需要对问题的本质进行分析,抓住问题特征,分析解决方案。欧拉在分析一笔画问题的时候,发现了一笔画问题的本质特征,即,顶点度数的特征。能够一笔画出来并回到原点的图,其所有顶点的度数都为偶数,如图3(a);能够一笔画出来不能回到原点的图只有两个顶点度数为奇数,其他顶点度数为偶数,如图3(b);不能一笔画出来的图有超过三个度数为奇数的顶点,如图3(c)。在得到这一特征之后,就可以具体分析哥

文档评论(0)

kaku + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:8124126005000000

1亿VIP精品文档

相关文档