- 1、本文档共42页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
卷积神经网络目录1.概述2.核心思想3.文字识别系统LeNet-54.优点1.概述卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。在CNN中,图像的一小部分(局部感受区域)作为层级结构的最低层的输入,信息再依次传输到不同的层,每层通过一个数字滤波器去获得观测数据的最显著的特征。这个方法能够获取对平移、缩放和旋转不变的观测数据的显著特征,因为图像的局部感受区域允许神经元或者处理单元可以访问到最基础的特征,例如定向边缘或者角点。2.核心思想卷积神经网络通过以下特性来保证图像对位移、缩放、扭曲的鲁棒性:局部感受野权值共享时间/空间亚采样局部感受野BP神经网络全连接卷积神经网络局部连接全连接网络。如果我们有1000x1000像素的图像,有1百万个隐层神经元,每个隐层神经元都连接图像的每一个像素点,就有1000x1000x1000000=10^12个连接,也就是10^12个权值参数。局部连接网络,每一个节点与上层节点同位置附件10x10的窗口相连接,则1百万个隐层神经元就只有100w乘以100,即10^8个参数。其权值连接个数比原来减少了四个数量级。权值共享隐含层的每一个神经元都连接10x10个图像区域,也就是说每一个神经元存在10x10=100个连接权值参数。如果设定每个神经元这100个参数是相同的,也就是说每个神经元用的是同一个卷积核去卷积图像,参数个数与神经元个数无关。无论隐层的神经元个数有多少,两层间的连接只有100个参数隐层的参数个数和隐层的神经元个数无关,只和滤波器的大小和滤波器种类的多少有关。Feature Map假如一种滤波器,也就是一种卷积核就是提出图像的一种特征。提取不同的特征,需要多个滤波器。每种滤波器的参数不一样,表示它提出输入图像的不同特征。这样每种滤波器去卷积图像就得到对图像的不同特征的放映,我们称之为Feature Map。100种卷积核就有100个Feature Map。这100个Feature Map就组成了一层神经元。每层参数个数=100种卷积核x每种卷积核共享100个参数=100x100=10K,也就是1万个参数。隐层神经元个数隐层的神经元个数和原图像,也就是输入的大小(神经元个数)、滤波器的大小和滤波器在图像中的滑动步长都有关。例如,图像是1000x1000像素,而滤波器大小是10x10,假设滤波器没有重叠,也就是步长为10,这样隐层的神经元个数就是(1000x1000 )/ (10x10)=100x100个神经元了。注意:这只是一种滤波器,也就是一个Feature Map的神经元个数如果100个Feature Map就是100倍了。由此可见,图像越大,神经元个数和需要训练的权值参数个数的差距就越大网络结构卷积神经网络含多层;每层含多个二维Feature Map;每个Feature Map含多个神经元。C层为特征提取层,每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来;S层是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。卷积神经网络中的每一个特征提取层(C-层)都紧跟着一个用来求局部平均与二次提取的计算层(S-层)。3.文字识别系统LeNet-51. 输入图像是32x32的大小,局部滑动窗的大小是5x5的,由于不考虑对图像的边界进行拓展,则滑动窗将有28x28个不同的位置,也就是C1层的大小是28x28。 C1层是一个卷积层(通过卷积运算,可以使原信号特征增强,并且降低噪音),由6个特征图Feature Map构成。特征图中每个神经元与输入中5*5的邻域相连。C1有156个可训练参数(每个滤波器5*5=25个unit参数和一个bias参数,一共6个滤波器,共(5*5+1)*6=156个参数),共156*(28*28)=122,304个连接。C1层:输入图片大小: 32*32卷积窗大小: 5*5卷积窗种类:6输出特征图数量:6输出特征图大小: 28*28 (32-5+1)神经元数量: 4707 [(28*28)*6)]连接数: 12304 [(5*5+1)*6]*(28*28)可训练参数: 156 [(5*5+1)*6]2. S2层是一个下采样层,利用图像局部相关性的原理,对图像进行子抽样,可以减少数据处理量同时保留有用信息。S2层每个单元的4个输入相加,乘以一个可训练参数,再加上一个可训练偏置,结果通过sigmoid函数计算。
您可能关注的文档
- PQ mib 大众原厂车机大全.pptx
- practice-Unit 3.ppt
- 课件15第六章:技术磁化理论4.ppt
- 课件-组成与结构-03章.ppt
- 课件-诗歌-饮马长城窟行.ppt
- Prism文档整理.docx
- PP第五章_成本论.ppt
- proe课程设计报告.docx
- 课件-秋天到.ppt
- Primavera-P6项目管理软件培训2.ppt
- 专题06 经济体制(我国的社会主义市场经济体制)-五年(2020-2024)高考政治真题分类汇编(解析版).docx
- 专题11 世界多极化与经济全球化-5年(2020-2024)高考1年模拟政治真题分类汇编(解析版).docx
- 专题03 经济发展与社会进步-5年(2020-2024)高考1年模拟政治真题分类汇编(浙江专用)(解析版).docx
- 专题09 文化传承与文化创新-5年(2020-2024)高考1年模拟政治真题分类汇编(北京专用)(原卷版).docx
- 5年(2020-2024)高考政治真题分类汇编专题08 社会进步(我国的个人收入分配与社会保障)(原卷版).docx
- 专题07 探索世界与把握规律-5年(2020-2024)高考1年模拟政治真题分类汇编(解析版).docx
- 5年(2020-2024)高考政治真题分类汇编专题06 经济体制(我国的社会主义市场经济体制)(原卷版).docx
- 专题11 全面依法治国(治国理政的基本方式、法治中国建设、全面推进依法治国的基本要求)-五年(2020-2024)高考政治真题分类汇编(解析版).docx
- 专题17 区域联系与区域协调发展-【好题汇编】十年(2015-2024)高考地理真题分类汇编(解析版).docx
- 专题01 中国特色社会主义-5年(2020-2024)高考1年模拟政治真题分类汇编(原卷版).docx
最近下载
- 高同型半胱氨酸血症的诊断、治疗与预防专家共识.docx VIP
- 人教版高中英语必修第二册《UNIT 3 THE INTERNET》大单元整体教学设计.pdf
- 微型消防站工作职责(标准版).docx VIP
- 呼唤-快车上玩家地图1 plmap演示版.pdf
- 德邦零担业务诊断及新产品开发项目建议书-2014.pptx VIP
- 人教版高中英语必修第二册《UNIT 4 HISTORY AND TRADITIONS》大单元整体教学设计.docx
- 高同型半胱氨酸血症的诊断、治疗与预防.pptx VIP
- 附件2:汽车专访.pdf VIP
- 2024年食品安全生产经营大比武理论考试题库资料-下(多选、判断题汇总).pdf
- 快车上的恐怖旅行手册.pdf
文档评论(0)