网站大量收购独家精品文档,联系QQ:2885784924

甘油水溶液氢键特性的分子动力学模拟3.doc

甘油水溶液氢键特性的分子动力学模拟3.doc

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
目录摘要 1 关键词 1 Abstract 1 引言 2 1.一些研究者通过经典的结晶理论建立了胞内冰 2 2.模拟结果 2 2.1径向分布函数 2 2.2甘油分子的构型分布 3 2.3氢键分析 3 2.3.1氢键的选择 3 2.3.2氢键结构分析 4 2.3.3氢键动力分析 5 3.结论 5 参考文献 6 甘油水溶液氢键特性的分子动力学模拟 :为了研究低温保护剂溶液的结构和物理化学特性,以甘油为保护剂,采用分子动力学方法,对不同浓度的甘油和水的二元体系进行了模拟。得到了不同浓度的甘油水溶液在2 ns内的分子动力学运动轨迹,通过对后1 ns内运动轨迹的分析,得到了各个原子对的径向分布函数和甘油分子的构型分布。根据氢键的图形定义,分析了氢键的结构和动力学特性。计算了不同浓度下体系中平均每个原子(O和H)和分子(甘油和水)参与氢键个数的百分比分布及其平均值。同时还计算了所有氢键、水分子之间的氢键以及甘油与水分子之间的氢键的生存周期。 :分子动力学模拟;径向分布函数;低温保护剂;水溶液Abstract:To study the structure and physicochemical characteristics of cry protective agent (CPA) solutions, Glycerol has been chosen as a CPA and the molecular dynamics method was used to simulate glycerol and water binary Systems with different concentrations. Molecular dynamics trajectories of aqueous glycerol solutions within 2 ns were obtained. After a detailed analysis of trajectories within the last 1 ns, the intermolecular radial distribution functions for C-C,C-O,C-H,O-H,O-O and H-H pairs and the backbone conformation distributions of glycerol molecules were calculated. Based on geometrical criteria, structural and dynamics characteristics of the hydrogen bonding network were analyzed. Distribution percentages and average values of the number of hydrogen bonds per atom (O and H atoms) and per molecule(glycerol and water molecules)were calculated. The lifetimes of total hydrogen bonds, hydrogen bonds between water molecules and hydrogen bonds between glycerol and water molecules were also studied. Key Words:Molecular dynamics simulation; Radial distribution function; Cry protective agent; Aqueous Solution 引言 迄今为止,人类虽然已经成功保存多种细胞和组织,但是对细胞在冷冻和复温过程中的损伤机理还不是十分清楚[1]。为了保存更大体积的生物材料(如人的肾脏、肝脏和心脏),有不少研究者仍在从事相关的基础研究工作。胞内冰晶的形成将导致微细结构的破坏,使细胞死亡。因此最理想的保存方案是玻璃化降温保存,但此过程要求很高的降温速率。目前的降温手段以及样品内温度均匀分布要求还不允许有这么高的降温速率。若能从理论上预测胞内冰晶的形成和生长规律,在此基础上寻找抑制冰晶生成和生长的方法,则可以实现正常降温速率下的玻璃化保存,最大限度地提高细胞冷藏后的存活率。 1、一些研究者通过经典的结晶理论建立了胞内冰 晶生成和生长模型,如Karlsson的扩散控制模型[2]以及Zhao的统一模型[3]。我们曾经确定了冷冻过程中胞内溶液的均相成核温度下降值与平衡凝固点下降值的关系[4],并根据此关系,建立了基于软冲突的扩散控制生长模型[5]。虽然我们的模型预测结果

文档评论(0)

kabudou + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档