网站大量收购独家精品文档,联系QQ:2885784924

 一种用于高速高精度ADC的电压基准源设计.doc

 一种用于高速高精度ADC的电压基准源设计.doc

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
引言 随着集成电路规模不断扩大,尤其是芯片系统集成技术的提出,对模拟集成电路基本模块(如A/D、D/A转换器、滤波器以及锁相环等电路)提出了更高的精度和速度要求,这也就意味着系统对其中的基准源模块提出了更高的要求。 用于高速高精度ADC的片内电压基准源不仅要满足ADC精度和采样速率的要求,并应具有较低的温度系数和较高的电源抑制比,此外,随着低功耗和便携的要求,ADC也在朝着低压方向发展,相应的基准源也要满足低电源电压的要求。 本文分析了基准源对流水线ADC精度的影响,并建立了相应的模型,确定了高速高精度ADC对电压基准源的性能要求。给出了基于1.8 V的低电源电压,并采用结构简单的VBE非线性二阶补偿带隙基准源的核心电路,该补偿方式可以实现较低的温度系数,能满足高速高精度ADC的要求。箝位运放采用一种低噪声两级运算放大器,该运放可提供小于0.02 mV的失调电压,因而保证了基准源的补偿精度。为了提高基准源的电源抑制比,本文除采用常用的共源共栅电流镜技术以外,还设计了一种简单有效的电源抑制比提高电路,从而使得基准源的电源抑制比有了较大提高。 1? 电压基准源影响的建模分析 在Pipelined ADC系统中,基准源的主要作用是为子ADC提供比较电平,同时为MDAC提供残差电压。差分基准电压源发生偏移会导致子ADC比较电平和MDAC残差电压发生变化。而通过引入冗余位矫正技术可大大减小差分基准电压源所引起的比较电平变化对系统指标造成的影响,但是,MDAC残差电压变化的影响却无法消除,系统的转移特性曲线仍将会发生变化,从而造成系统指标下降。其中基准电压源的偏移主要来源于温度和电源电压的影响。 下面分析基准电压源温度漂移特性对DNL的影响。一般情况下,实际相邻输出与理想相邻输出之间的偏差可以表示为: 对于首级精度为3.5位的12位ADC,在-40℃~85℃的温度范围内,对温度要求最严格的比较器一般要求基准电压源的最大温漂不超过(7/8)Vdiff。 根据下列两式: 可以得到DNL对基准电压源温度系数的要求,即温度系数TC≤6.84 ppm/℃。式中,VT0为室温25℃时的基准电压值。 2电压基准源电路结构设计 2.1? 二阶曲率补偿技术 由前文分析可知,12位ADC系统要求温度系数应小于6.84ppm/K才能达到12位精度。传统带隙基准源很难达到这个要求,因此,本文选用一种如图1所示的二阶曲率补偿的电压基准源结构。 如图1所示,根据VBE的温度关系式: 从(5)式可以看出,VBE与温度并不是简单的线性关系,最后一项就是非线性项。其中η是与工艺相关的量。如果发射极电流是PTAT电流,那么α=1;如果发射极电流与温度无关,则α=0。图1中流入Q1、Q2的电流是PTAT电流,故有: 因流入Q3的电流也与温度无关,故有: 由于流过R4和R5的电流INL正比与VNL,故可表示为: 设M1、M2、M3和M4管的宽长比一样,所以,流过四个管子的电流相等且都等于: 从式(10)可以看出,式子的第三项用来消除VEB1的非线性,这样,结合(6)式可得: 这样,由(10)式可以得到输出的基准电压源为: 2.2? 低噪声箝位运放的设计 在基准源中,箝位运放的主要作用是通过电流负反馈使与输入端连接的结点的电压强制相等,并且与电源电压无关。可用运放的输出对电流源进行适当的偏置,使其流过的电流与输入电压无关,从而使R的电流为PTAT电流。实际的运放通常会存在失调电压、有限增益以及运放噪声,这些都会对基准电压源的性能造成影响,由于基准电压源一般工作在低频条件下,因此,对运放的频率特性要求不高。 本文在设计低噪声箝位运放的过程中,重点考虑了以下几个因素: (1)由于运放的两个输入端基本为固定电位,不需要考虑动态范围,因此,运放的设计不考虑共模输入范围;为了保证电路适用于低电源电压场合,cascode结构不再适合,因此,本文选用普通两级运放的设计方式; (2)选用PMOS作为运放的输入级。因为PMOS的载流子与空穴的迁移率比NMOS的电子迁移率低2~5倍,故可以较大的减小1/f噪声。同时由于1/噪声与MOS管的面积成反比,因此,输入管的面积需要做的很大; (3)为了使1/f噪声最小化,负载晶体管的栅长应该比输入管的栅长更长; (4)减小箝位运放的带宽可以有效的减小热噪声的影响。 经过仿真可以得到如图2所示的低噪声箝位运放的频率特性曲线,该曲线表明箝位运放的开环增益为81dB,单位增益带宽为139 MHz,相位裕度为61°,失调电压为0.02 mV,可见该运放能够满足系统要求。 2.3? 提高电源抑制比的电路设计 带隙基准电路的电源电压抑制比可以表示为:PSRR=∣(1-Add

您可能关注的文档

文档评论(0)

taojiao + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档