第八章样本分布.ppt

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
CHAPTER 8: Sampling Distributions to accompany Introduction to Business Statistics fourth edition, by Ronald M. Weiers Presentation by Priscilla Chaffe-Stengel Donald N. Stengel ? 2002 The Wadsworth Group Chapter 8 - Learning Objectives Determine the sampling distributions of: Means. Proportions. Explain the Central Limit Theorem. Determine the effect on the sampling distribution when the samples are relatively large compared to the population from which they are drawn. Sampling Distribution of the Mean When the population is normally distributed Shape: Regardless of sample size, the distribution of sample means will be normally distributed. Center: The mean of the distribution of sample means is the mean of the population. Sample size does not affect the center of the distribution. Spread: The standard deviation of the distribution of sample means, or the standard error, is Standardizing a Sample Mean on a Normal Curve The standardized z-score is how far above or below the sample mean is compared to the population mean in units of standard error. “How far above or below” = sample mean minus μ “In units of standard error” = divide by Standardized sample mean Central Limit Theorem According to the Central Limit Theorem (CLT), the larger the sample size, the more normal the distribution of sample means becomes. The CLT is central to the concept of statistical inference because it permits us to draw conclusions about the population based strictly on sample data without having knowledge about the distribution of the underlying population. Sampling Distribution of the Mean When the population is not normally distributed Shape: When the sample size taken from such a population is sufficiently large, the distribution of its sample means will be approximately normally distributed regardless of the shape of the underlying population those samples are taken from. According to the Central Limit Theorem, the larger the sample size, the more no

文档评论(0)

tiangou + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档