NetworkX解剖.doc

  1. 1、本文档共40页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
NetworkX是一个用Python语言开发的图论与复杂网络建模工具,内置了常用的图与复杂网络分析算法,可以方便的进行复杂网络数据分析、仿真建模等工作。我已经用了它一段时间了,感觉还不错(除了速度有点慢),下面介绍我的一些使用经验,与大家分享。 一、NetworkX及Python开发环境的安装 首先到/pypi/networkx/下载networkx-1.1-py2.6.egg,到/projects/pywin32/下载pywin32-214.win32-py2.6.exe。如果要用Networkx的制图功能,还要去下载matplotlib和numpy,地址分别在/projects/matplotlib/和/projects/numpy/files/。注意都要用Python 2.6版本的。 上边四个包中,pywin32、matplotlib和numpy是exe文件,按提示一路next,比较容易安装。而NetworkX是个egg文件,安装稍微麻烦,需要用easyinstall安装。具体方法: 启动DOS控制台(在“运行”里输入cmd),输入C:\Python26\Lib\site-packages\easy_install.py C:\networkx-1.1-py2.6.egg,回车后会自动执行安装。注意我是把networkx-1.1-py2.6.egg放到了C盘根目录,读者在安装时应该具体根据情况修改路径。 安装完成后,启动 “开始 - 程序 - ActiveState ActivePython 2.6 (32-bit) - PythonWin Editor”,在shell中输入: import networkx as nx print nx 如果能输出: module networkx from C:\Python26\lib\site-packages\networkx-1.1-py2.6.egg\networkx\__init__.pyc 说明Networkx已经安装好了,可以正常调用。 关于Python语言,如果没有接触过可以找一本Python的语法书来看看(推荐《Python 精要参考(第二版)》,网上有电子版)。这个语言很简单易学,只要有点编程基础,几天就可以学会它,然后就可以自如的运用它调用NetworkX了。 二、建立图或网络 1、无向图 在PythonWin 的Shell里输入: import networkx as nx??????????????????????????? #导入NetworkX包,为了少打几个字母,将其重命名为nx G = nx.Graph()??????????????????????????????????????? #建立一个空的无向图G G.add_node(1)??????????????????????????????????????? #添加一个节点1 G.add_edge(2,3)???????????????????????????????????? #添加一条边2-3(隐含着添加了两个节点2、3) G.add_edge(3,2)???????????????????????????????????? #对于无向图,边3-2与边2-3被认为是一条边 print G.nodes()?????????????????????????????????????? #输出全部的节点: [1, 2, 3] print G.edges()?????????????????????????????????????? #输出全部的边:[(2, 3)] print G.number_of_edges()??????????????????? #输出边的数量:1? 这样就可以建立一个简单的无向图了。如果你的数据是存在文件里的,可以循环从文件中读取节点和边添加到G中。 2、有向图 有向图的建立方式和无向图基本类似,只是在上述代码的第二行,将G = nx.Graph() 改为 G = nx.DiGraph() 。需要注意的是,此时再添加边3-2与边2-3,则被认为是两条不同的边(可以试着运行上述代码,自己查看结果)。 同时,有向图和无向图是可以相互转化的,分别用到Graph.to_undirected() 和 Graph.to_directed()两个方法。 3、加权图(网络) 有向图和无向图都可以给边赋予权重,用到的方法是add_weighted_edges_from,它接受1个或多个三元组[u,v,w]作为参数,其中u是起点,v是终点,w是权重。例如: G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)]

文档评论(0)

妈妈王子 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档