- 1、本文档共74页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
AMPL编程 主讲人: 贾海成 Introduction AMPL: A Modeling Language for Mathematical Programming Website: Introduction 解决最优化问题模型的计算机软件 (30多种) Introduction 解决最优化问题模型的计算机软件 Introduction Introduction Introduction 什么是最优化问题? 所谓最优化问题一般是指按照给定的标准在某些约束条件下选取最优的解集。 主要分支: 线性规划、整数规划、二次规划、非线性规划、随机规划、动态规划、组合最优化、无限维最优化 Introduction A simple two-variable linear program A Steel company two products: Bands and Coils production rate (Tons per hour): Bands 200; Coils 140. Profit margin (Profit per ton): Bands $25; Coils $30. Introduction The following weekly production amounts are the most that can be justified in light of the currently booked orders: Maximum tons: Bands 6000; Coils 4000 If 40 hours of production time are available this week, how many tons of bands and how many tons of coils should be produced to bring in the greatest total profit? Introduction Mathematic model Introduction Method 1 Introduction Method 2 Introduction Method 2 Introduction Method 2 Introduction The two-variable linear program in AMPL Prod0.mod prod0.run Introduction Adding one variable A Steel company Three products: Bands, Coils and Plate Production rate (Tons per hour): Bands 200; Coils 140; Plate 160. Profit margin (Profit per ton): Bands $25; Coils $30; Plate $29. Introduction The following weekly production amounts are the most that can be justified in light of the currently booked orders: Maximum tons: Bands 6000; Coils 4000; Plate 3500 If 40 hours of production time are available this week, how many tons of bands and how many tons of coils should be produced to bring in the greatest total profit? Introduction Mathematic model Introduction var XB; var XC; var xp; maximize Profit: 25*XB+30*XC+29*xp; subject to Time: (1/200)*XB+(1/140)*XC+(1/160)*xp=40; subject to B_limit: 0=XB=6000; subject to C_limit: 0=XC=4000; subject to p_limit:
文档评论(0)