网站大量收购闲置独家精品文档,联系QQ:2885784924

《DHSch3part2.ppt

  1. 1、本文档共19页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Chapter 3: Maximum-Likelihood and Bayesian Parameter Estimation (part 2) Bayesian Estimation (BE) Bayesian Parameter Estimation: Gaussian Case Bayesian Parameter Estimation: General Estimation Problems of Dimensionality Computational Complexity Component Analysis and Discriminants Hidden Markov Models Bayesian Estimation (Bayesian learning to pattern classification problems) In MLE ? was supposed fix In BE ? is a random variable The computation of posterior probabilities P(?i | x) lies at the heart of Bayesian classification Goal: compute P(?i | x, D) Given the sample D, Bayes formula can be written To demonstrate the preceding equation, use: Bayesian Parameter Estimation: Gaussian Case Goal: Estimate ? using the a-posteriori density P(? | D) The univariate case: P(? | D) ? is the only unknown parameter (?0 and ?0 are known!) Reproducing density Identifying (1) and (2) yields: The univariate case P(x | D) P(? | D) computed P(x | D) remains to be computed! It provides: (Desired class-conditional density P(x | Dj, ?j)) Therefore: P(x | Dj, ?j) together with P(?j) And using Bayes formula, we obtain the Bayesian classification rule: Bayesian Parameter Estimation: General Theory P(x | D) computation can be applied to any situation in which the unknown density can be parametrized: the basic assumptions are: The form of P(x | ?) is assumed known, but the value of ? is not known exactly Our knowledge about ? is assumed to be contained in a known prior density P(?) The rest of our knowledge ? is contained in a set D of n random variables x1, x2, …, xn that follows P(x) The basic problem is: “Compute the posterior density P(? | D)” then “Derive P(x | D)” Using Bayes formula, we have: And by independence assumption: Problems of Dimensionality Problems involving 50 or 100 features (binary valued) Classification accuracy depends upon the dimensionality and the amount of training data Case of two classes multivariate normal with t

文档评论(0)

185****7617 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档