- 1、本文档共19页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Chapter 3:Maximum-Likelihood and Bayesian Parameter Estimation (part 2) Bayesian Estimation (BE) Bayesian Parameter Estimation: Gaussian Case Bayesian Parameter Estimation: General Estimation Problems of Dimensionality Computational Complexity Component Analysis and Discriminants Hidden Markov Models Bayesian Estimation (Bayesian learning to pattern classification problems) In MLE ? was supposed fix In BE ? is a random variable The computation of posterior probabilities P(?i | x) lies at the heart of Bayesian classification Goal: compute P(?i | x, D) Given the sample D, Bayes formula can be written To demonstrate the preceding equation, use: Bayesian Parameter Estimation: Gaussian Case Goal: Estimate ? using the a-posteriori density P(? | D) The univariate case: P(? | D) ? is the only unknown parameter (?0 and ?0 are known!) Reproducing density Identifying (1) and (2) yields: The univariate case P(x | D) P(? | D) computed P(x | D) remains to be computed! It provides: (Desired class-conditional density P(x | Dj, ?j)) Therefore: P(x | Dj, ?j) together with P(?j) And using Bayes formula, we obtain the Bayesian classification rule: Bayesian Parameter Estimation: General Theory P(x | D) computation can be applied to any situation in which the unknown density can be parametrized: the basic assumptions are: The form of P(x | ?) is assumed known, but the value of ? is not known exactly Our knowledge about ? is assumed to be contained in a known prior density P(?) The rest of our knowledge ? is contained in a set D of n random variables x1, x2, …, xn that follows P(x) The basic problem is: “Compute the posterior density P(? | D)” then “Derive P(x | D)” Using Bayes formula, we have: And by independence assumption: Problems of Dimensionality Problems involving 50 or 100 features (binary valued) Classification accuracy depends upon the dimensionality and the amount of training data Case of two classes multivariate normal with t
您可能关注的文档
最近下载
- 演出合同范本13篇.pdf VIP
- 佳能EOS6D使用说明.docx
- 世茂集团工程招投标技术标管理制度.docx
- 长安铃木吉姆尼电路图.pdf
- 美国材料与试验协会A480-A480M-2016_平扎不锈钢及耐热钢中板、薄板及钢带的一般要求[1](中文版).doc
- 地铁保洁服务投标方案(技术标).docx
- 2022年湖南衡阳市衡东县人大代表服务中心选调考试备考试题及答案解析.docx VIP
- 3完整版本.1固相反应.ppt VIP
- 2025高考英语时事热点阅读专练10 自然和宇宙探索(学生版+解析版).docx
- 2023年北京中考数学重难题型01新定义创新型综合压轴问题(13-22年最后一题+真题10道模拟30道)含详解.pdf VIP
文档评论(0)