课件_6_Matlab软件包与Logistic回归.doc

  1. 1、本文档共23页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Matlab软件包与Logistic回归 在回归分析中,因变量可能有两种情形:(1)是一个定量的变量,这时就用通常的regress函数对进行回归;(2)是一个定性的变量,比如,0或1,这时就不能用通常的regress函数对进行回归,而是使用所谓的Logistic回归。 Logistic回归的基本思想是,不是直接对进行回归,而是先定义一种概率函数,令 。此时,如果直接对进行回归,得到的回归方程可能不满足这个条件。在现实生活中,一般有。直接求的表达式,是比较困难的一件事,于是,人们改为考虑 一般的,。人们经过研究发现,令 即,是一个Logistic型的函数,效果比较理想。于是,我们将其变形得到: 然后,对进行通常的线性回归。例如,Logistic型概率函数的图形如下:ezplot(1/(1+300*exp(-2*x)),[0,10]) 例1 企业到金融商业机构贷款,金融商业机构需要对企业进行评估。例如,Moody公司就是New York的一家专门评估企业的贷款信誉的公司。设: 下面列出美国66家企业的具体情况: Y X1 X2 X3 0 -62.8 -89.5 1.7 0 3.3 -3.5 1.1 0 -120.8 -103.2 2.5 0 -18.1 -28.8 1.1 0 -3.8 -50.6 0.9 0 -61.2 -56.2 1.7 0 -20.3 -17.4 1.0 0 -194.5 -25.8 0.5 0 20.8 -4.3 1.0 0 -106.1 -22.9 1.5 0 -39.4 -35.7 1.2 0 -164.1 -17.7 1.3 0 -308.9 -65.8 0.8 0 7.2 -22.6 2.0 0 -118.3 -34.2 1.5 0 -185.9 -280.0 6.7 0 -34.6 -19.4 3.4 0 -27.9 6.3 1.3 0 -48.2 6.8 1.6 0 -49.2 -17.2 0.3 0 -19.2 -36.7 0.8 0 -18.1 -6.5 0.9 0 -98.0 -20.8 1.7 0 -129.0 -14.2 1.3 0 -4.0 -15.8 2.1 0 -8.7 -36.3 2.8 0 -59.2 -12.8 2.1 0 -13.1 -17.6 0.9 0 -38.0 1.6 1.2 0 -57.9 0.7 0.8 0 -8.8 -9.1 0.9 0 -64.7 -4.0 0.1 0 -11.4 4.8 0.9 1 43.0 16.4 1.3 1 47.0 16.0 1.9 1 -3.3 4.0 2.7 1 35.0 20.8 1.9 1 46.7 12.6 0.9 1 20.8 12.5 2.4 1 33.0 23.6 1.5 1 26.1 10.4 2.1 1 68.6 13.8 1.6 1 37.3 33.4 3.5 1 59.0 23.1 5.5 1 49.6 23.8 1.9 1 12.5 7.0 1.8 1 37.3 34.1 1.5 1 35.3 4.2 0.9 1 49.5 25.1 2.6 1 18.1 13.5 4.0 1 31.4 15.7 1.9 1 21.5 -14.4 1.0 1 8.5 5.8 1.5 1 40.6 5.8 1.8 1 34.6 26.4 1.8 1 19.9 26.7 2.3 1 17.4 12.6 1.3 1 54.7 14.6 1.7 1 53.5 20.6 1.1 1 35.9 26.4 2.0 1 39.4 30.5 1.9 1 53.1 7.1 1.9 1 39.8 13.8 1.2 1 59.5 7.0 2.0 1 16.3 20.4 1.0 1 21.7 -7.8 1.6 其中, 建立破产特征变量的回归方程。 解:在这个破产问题中, 我们讨论,概率。设=企业2年后具备还款能力的概率,即, =企业不破产的概率。因为66个数据有33个为0,33个为1,所以,取分界值0.5,令 由于我们并不知道企业在没有破产前概率的具体值,也不可能通过的数据把这个具体的

文档评论(0)

gangshou + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档